• 主管:福建省海洋与渔业局
  • 主办:福建省水产学会,福建省水产研究所

AC3介导草鱼GCRV感染的功能机制研究

段伟, 唐浩, 孙明雪, 廖伊健, 肖调义, 李耀国

段 伟,唐 浩,孙明雪,等. AC3介导草鱼GCRV感染的功能机制研究[J]. 渔业研究,2024,46(6) :563 − 571. DOI: 10.14012/j.jfr.2024087
引用本文: 段 伟,唐 浩,孙明雪,等. AC3介导草鱼GCRV感染的功能机制研究[J]. 渔业研究,2024,46(6) :563 − 571. DOI: 10.14012/j.jfr.2024087
DUAN Wei, TANG Hao, SUN Mingxue, et al. Study on functional mechanisms of AC3-mediated GCRV infection in Ctenopharyngodon idella[J]. Journal of Fisheries Research, 2024, 46(6): 563-571. DOI: 10.14012/j.jfr.2024087
Citation: DUAN Wei, TANG Hao, SUN Mingxue, et al. Study on functional mechanisms of AC3-mediated GCRV infection in Ctenopharyngodon idella[J]. Journal of Fisheries Research, 2024, 46(6): 563-571. DOI: 10.14012/j.jfr.2024087

AC3介导草鱼GCRV感染的功能机制研究

基金项目: 湖南省自然科学基金项目(2024JJ5199)
详细信息
    作者简介:

    段 伟,男,硕士,研究方向为水产养殖。E-mail: 18303423591@163.com

    通讯作者:

    李耀国,男,副教授,研究方向为鱼类抗性育种。E-mail: yaoguolijkl@163.com

  • 中图分类号: S942.1

Study on functional mechanisms of AC3-mediated GCRV infection in Ctenopharyngodon idella

  • 摘要:
    背景 

    草鱼呼肠孤病毒(GCRV)感染可通过增大血管内皮通透性而引发渗漏出血。

    目的 

    为探明腺苷酸环化酶3(AC3)介导GCRV感染的功能机制,在草鱼肾脏细胞系(CIK)中开展了系列研究。

    方法 

    在CIK细胞内成功实现了AC3过表达,使用荧光定量PCR(qPCR)检测GCRV感染不同时间点(0 h、12 h、24 h)ac3claudin cclaudin 15claudin 18irf3irf7ifn1ifn2的相对表达量;通过蛋白免疫印迹(WB)检测GCRV VP7的蛋白量;采用细胞电阻仪检测CIK细胞层不同条件下的跨内皮电阻(TEER)值,以及利用透射电镜检测CIK细胞间的连接状态。

    结果 

    研究结果显示,AC3过表达显著增强了CIK细胞紧密连接分子claudin 15claudin 18的表达量,但对干扰信号素通路基因irf3irf7ifn1ifn2的表达水平未产生显著影响,而抑制了GCRV VP7的蛋白量。跨内皮电阻检测发现,AC3过表达显著增加了CIK细胞层的电阻值。透射电镜检测结果显示,AC3过表达降低了GCRV感染对CIK细胞间连接的损伤程度。

    结论 

    AC3可以影响claudin分子的相对表达量及细胞屏障功能,抑制GCRV在细胞中的增殖。

    意义 

    本研究从细胞通透性角度开拓了GCRV抗性关联分子发掘的新路径。

    Abstract:
    Background 

    Grass carp reovirus (GCRV) infection can cause leakage bleeding by increasing vascular endothelial permeability.

    Objective 

    To investigate the functional mechanism of adenylate cyclase 3 (AC3) mediated GCRV infection, a series of studies were conducted in Ctenopharyngodon idella kidney (CIK) cells.

    Methods 

    AC3 overexpression was successfully achieved in CIK cells. Real-time fluorescent quantitative polymerase chain reaction (qPCR) was used to detect the relative expression of ac3, claudin c, claudin 15, claudin 18, irf3, irf7, ifn1 and ifn2 at different time points (0 h, 12 h, and 24 h) of GCRV infection. The protein level of GCRV VP7 was detected by Western blot (WB). The transendothelial electrical resistance (TEER) of the CIK cell layer under various conditions was measured using a cell resistance meter, while the connections between CIK cells were examined using a transmission electron microscope.

    Results 

    The results showed that AC3 overexpression significantly enhanced the expression of tight junction molecules claudin 15 and claudin 18 in CIK cells, but had no significant effect on the expression levels of interfering semaphorin pathway genes irf3, irf7, ifn1 and ifn2. However, the protein amount of GCRV VP7 was inhibited. The transepithelial electrical resistance assay demonstrated that AC3 overexpression significantly increased the resistance of the CIK cell layer. Transmission electron microscopy results indicated that AC3 overexpression reduced the extent of damage to CIK cell-to-cell junctions caused by GCRV infection.

    Conclusion 

    In summary, AC3 can influence the relative expression of claudin molecules and the barrier function of cells, inhibiting GCRV proliferation within these cells.

    Significance 

    This study introduces a novel approach for discovering GCRV resistance-related molecules from the perspective of cell permeability.

  • 草鱼呼肠孤病毒(Grass carp reovirus,GCRV)感染引发的草鱼出血病限制了草鱼产业的健康发展。Ⅰ型GCRV包含11个dsRNA(Double-stranded RNA),编码7种结构蛋白(VP1~VP7)和6种非结构蛋白(NS80、NS38、NS31、NS26、NS16和NS12)[1]。病毒内衣壳蛋白VP1、VP2、VP3和VP4在病毒的RNA复制中发挥作用,而VP6连接内外衣壳蛋白,外衣壳蛋白VP5和VP7负责病毒识别及吸附至宿主细胞膜的过程[2]

    GCRV感染1龄草鱼(Ctenopharyngodon idella)后,病鱼各脏器小血管内皮细胞肿胀坏死、通透性升高,肌肉、鳍条、鳃盖和肠道出现明显的点状出血[3]。从机制角度看,病毒感染可通过炎症、干扰素等调控途径影响血管内皮细胞间连接的程度,进而影响血管内皮通透性。登革热病毒NS1蛋白经TLR4介导的炎症因子释放等方式损伤血管,导致细胞间交联破坏,细胞通透性增大而发生出血病[4]。干扰素(Interferon,IFN)是由单核细胞和淋巴细胞等产生的具有抗病毒以及免疫调节功能的蛋白质[5]。GCRV感染后,IFN调节因子(Interferon regulatory factors,IRF)被激活并磷酸化,转移至细胞核与IFN反应元件(IFN-stimulated response elements,ISREs)相互作用,诱导IFN抗病毒反应的产生[6]。病毒性脑炎中IFN-γ通过Rho激酶(Rho kinase,ROCK)诱导细胞骨架收缩,导致细胞连接紊乱和细胞分离,是血脑屏障渗漏的主要原因[7]。细胞连接分子中Claudin家族成员负责细胞屏障功能调节,其与跨膜蛋白、胞质支架蛋白和肌动蛋白细胞骨架相互作用形成紧密连接,发挥维护细胞屏障特性的功能[8]。如Claudin c在健康草鱼的中肠表达量较高,而中肠损伤后Claudin c表达量显著降低,提示其参与肠道屏障功能的维护[9]。Claudin 15能影响细胞旁离子通路,猪近端肾小管上皮细胞(Porcine kidney proximal tubular epithelial cell,LLC-PK1)中过表达Claudin 15可增加Na+渗透率[10]。在小鼠中敲除Claudin 18后,细胞旁H+泄漏显著增强,说明Claudin 18在选择性细胞旁通透性中发挥关键作用[11]

    腺苷酸环化酶(Adenylate cyclase,AC)属于膜整合蛋白,通过催化三磷酸腺苷(Adenosine triphosphate,ATP)生成环磷酸腺苷(Cyclic adenosine monophosphate,cAMP)并释放焦磷酸,实现细胞外刺激信号的细胞内转化[12]。哺乳动物中已鉴定出9种AC亚型,其中AC3属于由Ca2+激动催化的功能成员[13]。AC通过促进cAMP合成调节Rho GTP酶(Rho guanosine triphosphatase,Rho GTPase)激活Ras相关C3肉毒杆菌毒素底物1(Ras-related C3 botulinum toxin substrate 1,Rac1)来影响紧密连接蛋白的分布,具有稳定细胞屏障的功能[14]。本研究以AC3为目标分子,重点探究其对GCRV感染状态下草鱼肾脏细胞系(C. idella kidney,CIK)中干扰素和细胞连接分子表达以及细胞层通透性的影响,旨在为高抗性草鱼分子选育的GCRV抗性关联分子筛选提供支持。

    CIK细胞由本团队传代获得[15];人脑微血管内皮细胞(Human brain microvascular endothelial cell,HBMEC)购自上海中乔新舟生物科技有限公司;GCRV-873毒株由本团队扩繁获得(滴度为1.0×103.625 TCID50/mL);pEGFP-AC3-Flag载体由苏州金唯智生物科技有限公司构建。

    RNA isolater Total RNA Extraction Reagent(Vazyme,南京);RevertAid First Strand cDNA Synthesis Kit(Thermo Fisher Scientific,美国);2×ChamQ Universal SYBR qPCR Master Mix(Vazyme,南京);超微量分光光度计(凯奥,美国);CFX96 Touch Real-Time PCR仪(Bio-rad,美国);VP7鼠源单克隆抗体(上海海洋大学邹钧教授惠赠);Anti-Actin Recombinant Rabbit Monoclonal Antibody、HRP Conjugated Goat anti-Rabbit Antibody和HRP Conjugated Goat anti-Mouse Antibody购自于杭州华安生物技术有限公司;PVDF膜(0.2 μm)(Merck,德国);PVDF膜活化液(碧云天,上海);转膜液(金斯瑞,南京);TBS(Biosharp,广州);Tween 20(Biosharp,广州);无蛋白快速封闭液(雅酶,上海);细胞电阻仪(Merck Millipore,美国);Transwell(LABSELECT,北京)。

    使用RNA isolater Total RNA Extraction Reagent提取CIK细胞的总RNA。使用超微量分光光度计测定其核酸浓度和纯度,经1%琼脂糖凝胶电泳检测其完整性;选取质量较好的RNA(A260/A280比值在1.8~2.2之间,电泳条带28S rRNA∶18S rRNA亮度比值约为2∶1),按照RevertAidTM First Strand cDNA Synthesis Kit说明书操作步骤合成cDNA。

    用NCBI在线网站设计荧光定量PCR(Real-time fluorescent quantative polymerase chain reaction,qPCR)引物(表1),由生工生物工程(上海)股份有限公司合成。以β-actin作为参考基因[16],在CFX96 Touch Real-Time PCR仪进行qPCR。反应体系为5 μL 2×Taq Pro Universal SYBR qPCR Master Mix,所检测基因的上、下游引物各 0.5 μL,2 μL cDNA模板和2 μL无菌水。反应程序为95 ℃ 30 s;45个循环的95 ℃ 5 s、60 ℃ 40 s;熔解曲线熔解峰清晰单一,从65 ℃上升至95 ℃,每5 s上升0.5 ℃,采集荧光信号。对CIK内转染空载和AC3表达载体、GCRV感染0、12和24 h状态下的ac3claudin cclaudin 15claudin 18irf3irf7ifn1ifn2的相对表达量进行检测。

    表  1  qPCR引物序列
    Table  1.  Primers used in the qPCR
    引物
    Primers
    引物序列(5’-3’ )
    Primer sequences (5’-3’ )
    熔解温度/℃
    Melting temperature
    β-actin-F GCTATGTGGCTCTTGACTTCG 59
    β-actin-R GGGCACCTGAACCTCTCATT 60
    AC3-F CGCTTCGACAAACTAGCAGC 58
    AC3-R CCTCCACCATAGACAAGCCC 58
    IFN1-F AAGCAACGAGTCTTTGAGCCT 58
    IFN1-R GCGTCCTGGAAATGACACCT 59
    IFN2-F TCCCGAAATCTGCACTGCAA 56
    IFN2-R CAGCTGGTTCCAGGACTCTG 58
    IRF3-F ATCTACTGGGGTCTATGCAA 53
    IRF3-R GCTGCATAAACTCCATCAAACC 56
    IRF7-F ACTAAACGCATCCTAGACAGT 56
    IRF7-R CTTTACACTTGTCCTGACGGAA 57
    Claudin 15-F ATTCTGGGTTTGCTGTCCGT 59
    Claudin 15-R GGCTGATTTTGCCCTTCGTC 60
    Claudin 18-F TTTGCAGCCACGGTTATGGA 57
    Caudin 18-R CCGGACACCTCGCAATTCTT 59
    Claudin c-F GTGGTTCAGAGTACCGGACA 58
    Claudin c-R GCAAGGACACCCACGATGAT 58
    下载: 导出CSV 
    | 显示表格

    将CIK细胞传代至6孔细胞培养板中,待细胞密度达到80%~90%时,将正确构建的AC3重组表达质粒转染至细胞中。细胞转染48 h后,加入GCRV悬液感染,采集GCRV未感染(0 h)、感染12 h以及感染24 h的细胞样品,提取细胞蛋白后,按1∶4的比例与十二烷基硫酸钠(SDS,5×)混合,快速离心,在热循环仪上99.9 ℃变性10 min。在聚丙烯酰胺凝胶电泳(PAGE)胶孔中加入10 μL变性的蛋白样品,100 V电泳30 min,然后140 V电泳使溴酚蓝移至PAGE胶底。PAGE胶经清水洗涤2次后,利用转膜仪将胶上蛋白转移至聚偏二氟乙烯(PVDF)膜上;用含吐温20的Tris-HCl盐酸缓冲盐溶液(TBST)清洗3次后,使用快速封闭液孵育30 min;而后弃去封闭液,加入一抗(1∶500稀释VP7抗体,1∶2500稀释β-actin抗体)置于4 ℃摇床孵育12 h;TBST清洗3次后,室温孵育二抗2 h(1∶5000稀释);将PVDF膜浸泡于ECL显色液,10 s后显色拍照,利用Image J软件进行Western blot条带的灰度分析。

    待CIK在培养皿中的生长密度达到80%时,转染AC3质粒,并在转染48 h后,用GCRV悬液感染24 h。在避光条件下,使用戊二醛固定细胞5 min,而后利用细胞刮刀收集细胞,将细胞转移至2 mL离心管中,2 000×g离心4 min;弃去固定液后,重新加入1 mL戊二醛,吹散细胞重悬,室温避光固定30 min。将细胞送至上海茁彩生物有限公司进行电镜拍照,观察不同条件下细胞连接的状态变化。

    在Transwell 24孔板的上室加入100 μL M199培养基,下室加入600 μL培养基,保存至37 ℃、CO2浓度为5%的孵育箱中培养24 h。弃去培养基,将CIK和HBMEC分别接种至Transwell 24孔板的上室,而下室加入600 μL不含血清的培养基。待细胞汇合度达到80%时,转染AC3;转染48 h后,使用GCRV悬液感染CIK。检测不同时间点的细胞层跨内皮电阻(Transendothelial electrical resistance,TEER):TEER(Ω·cm2)=(细胞层电阻值−基础电阻值)×Transwell上室滤膜的底面积(0.33 cm2),其中基础电阻值为仅含有M199培养基的Transwell孔的TEER值。

    使用Bio-Rad CFX Manager 3.1和Excel表格进行qPCR数据处理。使用IBM SPSS Statistics 26进行数据差异分析,并采用GraphPad Prism 9.0.0对数据进行统计作图;*表示P<0.05,**表示P<0.01。

    荧光倒置显微镜检测结果显示,AC3在CIK内成功实现了过表达,当转染48 h时,可见绿色荧光蛋白表达[图1(a)]。通过qPCR检测了ac3claudin c、claudin 15、claudin 18、irf3、irf7、ifn1ifn2的基因表达量。在GCRV未感染(0 h)、感染12 h以及感染24 h的AC3过表达组中,ac3基因表达量均极显著升高(P<0.01)[图1(b)]。从AC3影响细胞连接分子表达的角度来看,当GCRV感染12、24 h时,claudin 15claudin 18的基因表达水平均出现极显著升高[图1(d)和图1(e)](P<0.01)。此外,在GCRV感染状态下,irf3irf7ifn1ifn2表达量均显著上调[图1(f)~图1(i)](P<0.05),但在未感染状态下,AC3过表达对irf3irf7ifn1ifn2基因的表达量未产生显著影响。

    图  1  AC3对claudins及IFN信号通路基因表达量的影响
    注:图(a)为过表达pEGFP-AC3-Flag的荧光图(100 μm),图(b)~图(i)表示CIK内过表达AC3 48 h时,GCRV感染不同时间点细胞中ac3claudin cclaudin 15claudin 18irf3irf7ifn1以及ifn2的表达量;横坐标表示GCRV感染时间,其中0 h代表未感染。ns表示组间无差异,P>0.05;*表示组间差异显著,P<0.05;**表示组间差异极显著,P<0.01。图2图5同此。
    Figure  1.  Effect of AC3 on gene expression of claudins and IFN system
    Notes: Figure (a) shows the fluorescence pattern of overexpressed pEGFP-AC3-Flag (100 μm), from figure (b) to figure (i) show the expression levels of ac3, claudin c, claudin 15, claudin 18, irf3, irf7, ifn1, and ifn2 at different time points of GCRV infection after AC3-overexpressed in CIK cells for 48 h. The abscissa representeS the time of GCRV infection, and 0 h indicates the uninfected status. ns means there’s no difference between groups, P>0.05; * means there’s significant difference between groups, P<0.05; ** means there’s extremely significant difference between groups, P<0.01. It’s the same as figure 2 and figure 5.

    为在蛋白层面研究AC3对GCRV复制的影响,利用WB检测了GCRV感染0、12和24 h病毒外衣壳蛋白VP7的表达量。结果显示,当GCRV感染24 h时,AC3过表达减少了26%的VP7蛋白量(P<0.05)[(图2(a)和图2(b)]。

    图  2  CIK中过表达AC3 24 h对VP7蛋白量的影响
    注:图(a)中1、3、5、7、9为对照组,2、4、6、8、10为AC3过表达组。
    Figure  2.  Effect of AC3 overexpression for 24 hours on VP7 protein levels in CIK cells
    Notes: In figure (a), 1, 3, 5, 7 and 9 are control groups, and 2, 4, 6, 8 and 10 are AC3 overexpression groups.

    为探究AC3对细胞屏障功能的影响,通过透射电镜检测了各组CIK中细胞连接的状态(图3图4)。结果显示,转染空载和AC3后CIK细胞连接都有不同程度的损伤[图3(a)~图3(d)]。GCRV感染使细胞间间隙变大且边界模糊,细胞连接被严重破坏[图4(a)~图3(c)];而转染AC3组的细胞连接破坏程度明显较轻[图4(d)~图4(f)]。

    图  3  AC3过表达对CIK细胞间紧密连接的影响
    注:图(a)和图(b)表示CIK转染空载24 h时的细胞透射电镜图(200 nm),图(c)和图(d)表示CIK过表达AC3 24 h时的细胞透射电镜图(200 nm);图中“-·-”表示各电镜图片中相同长度区域;“→”表示损伤的紧密连接。
    Figure  3.  Effect of AC3 overexpression on the tight junctions between CIK cells
    Notes: Figures (a) and (b) show the transmission electron microscopy images of cells 24 hours after CIK transfection with empty vector (200 nm), while figures (c) and (d) show the transmission electron microscopy images of cells 24 hours after CIK overexpression of AC3 (200 nm). “-·-” in the figure indicated the same length area in each electron microscope picture. “→” indicated damaged tight junctions.
    图  4  AC3过表达缓解GCRV对CIK紧密连接的破坏
    注:图(a)~图(c)表示转染空载CIK细胞受到GCRV感染透射电镜图(200 nm),图(d)~图(f)表示过表达AC3的CIK细胞受到GCRV感染的透射电镜图(200 nm),图中“-·-”表示各电镜图片中相同长度区域;“→”表示损伤的紧密连接。
    Figure  4.  AC3 overexpression alleviates the disruption of CIK tight junctions by GCRV
    Notes: Figures (a)−(c) shows the transmission electron microscope images of empty vector overexpression cells that infected with GCRV (200 nm), and figures (d)−(f) show AC3 overexpressed CIK cells that infected with GCRV (200 nm), “-·-” in the figure indicates the same length area in each electron microscope picture, and “→” indicates damaged tight junctions.

    为探究AC3过表达对细胞层通透性的影响,分别检测了CIK和HBMEC细胞层电阻值。结果显示,CIK感染GCRV后细胞层电阻值极显著下降(P<0.01)[图5(a)],对应着细胞层通透性升高;而AC3过表达使CIK细胞层电阻提高(P<0.05),未受GCRV感染[图5(b)]和受到GCRV感染[图5(c)]的细胞通透性均降低。在HBMEC内过表达AC3,细胞层电阻显著升高(P<0.05)[图5(d)],对应着细胞通透性降低。结果表明,AC3可缓解GCRV感染导致的细胞通透性降低异常。

    图  5  AC3过表达对CIK细胞层通透性的影响
    注:图(a)表示CIK感染GCRV 24 h时的TEER值;图(b)表示在CIK内过表达AC3 48 h的TEER值;图(c)为CIK内过表达AC3 48 h且GCRV感染24 h时的TEER值;图(d)表示在HBMEC内过表达AC3 24 h的TEER值。
    Figure  5.  Effect of AC3 overexpression on the permeability of the CIK cell layer
    Notes: Figure (a) shows the TEER value of CIK cells after GCRV infection of 24 h; figure (b) shows the TEER value of CIK cells overexpressed AC3 for 48 h; figure (c) represents the TEER value at 24 h of GCRV infection when AC3 was overexpressed in CIK for 48 h; figure (d) shows the TEER value of HBMEC overexpression of AC3 at 24 h.

    草鱼出血病发生的病理机制在于GCRV感染并通过系列免疫反应破坏了血管内皮细胞屏障,最终发生血管渗漏,表现为出血症状[17-18]。细胞紧密连接是形成细胞间屏障、维持细胞层正常通透性的重要结构,其中Claudin家族成员是形成细胞紧密连接的关键分子[19]。该研究中首先发现AC3过表达显著提高了CIK细胞紧密连接分子claudin 15claudin 18的表达量已有研究[20]显示,Claudin 15是构成细胞紧密连接的重要结构蛋白,在维护细胞屏障功能方面发挥重要作用。Claudin 18参与维护气道上皮屏障功能,其被敲除导致小鼠气道上皮通透性增加,呼吸道对空气的敏感性增强[21]。哮喘患者的支气管上皮细胞(Human bronchial epithelial cell)claudin 18表达量较低,对应着肺泡上皮屏障受到损伤[22]。而在血管细胞内的AC通过刺激cAMP直接激活交换蛋白Epac(Exchange proteins directly activated by cAMP, Epac),可促进claudins介导的紧密连接的形成[23-24]。基于此,综合说明了AC3可能通过cAMP或者其他信号通路影响Claudin 15和Claudin 18所参与的细胞紧密连接结构。

    病毒感染触发机体的免疫防御反应,IFN作为重要的细胞因子参与激活抗病毒免疫应答[25]。例如,草鱼感染GCRV后,其TANK结合激酶1(TANK-binding kinase 1, TBK1)可通过激活IRF7诱导IFN1,并最终抑制病毒复制[26]。IRF3、IRF7以及IFN1和IFN2均是草鱼IFN系统中重要的GCRV感染免疫分子,其中IRF3/7能够介导IFN1/2的抗病毒免疫反应[27]。在未感染状态下,AC3过表达对irf3irf7ifn1ifn2基因表达并未产生显著影响,说明其GCRV感染组中4个基因表达量上升主要是GCRV感染所引起的,提示AC3分子并不通过IFN反应来影响GCRV感染免疫反应。尤其是,AC3过表达能够降低GCRV病毒VP7蛋白水平,说明其确实介导了GCRV感染免疫。Claudin分子被报道可介导多种病毒入胞,如Claudin-1能抑制哈扎拉内罗病毒的细胞间传播,对病毒感染发挥负调控作用[28]。AC3通过改变claudin 15claudin 18表达水平影响GCRV感染进程的功能机制有待深入研究。

    本研究还发现AC3过表达可增加CIK细胞层的TEER值,意味着AC3过表达可使CIK细胞层通透性降低,对应着细胞屏障功能增强;电镜检测结果也显示,AC3能够减缓GCRV感染下的细胞连接破坏,亦对应着细胞通透性及屏障功能的维护。AC在维持细胞通透性中发挥关键调控作用。如Oliver J A等[29]通过检测14C-蔗糖等物质在牛主动脉内皮细胞的渗透情况,发现AC可以减小细胞间紧密连接的宽度,实现维护细胞通透性的目的。在缺氧条件下,通过测定山梨糖醇和菊糖等组成的放射性跟踪剂在牛主动脉内皮细胞扩散程度,发现AC酶活性的降低可导致牛主动脉内皮细胞通透性增加[30]。综合表明AC3具有增强细胞层屏障功能的作用。

    综上,草鱼AC3的过表达能够提高claudin 15claudin 18的基因表达,增强CIK细胞层电阻值,减少GCRV感染状态后细胞连接结构的损坏,最终实现对病毒VP7蛋白的抑制作用;证实了AC3参与GCRV感染免疫,为从细胞通透性角度开展高抗性草鱼分子选育研究提供了直接支持。

  • 图  1   AC3对claudins及IFN信号通路基因表达量的影响

    注:图(a)为过表达pEGFP-AC3-Flag的荧光图(100 μm),图(b)~图(i)表示CIK内过表达AC3 48 h时,GCRV感染不同时间点细胞中ac3claudin cclaudin 15claudin 18irf3irf7ifn1以及ifn2的表达量;横坐标表示GCRV感染时间,其中0 h代表未感染。ns表示组间无差异,P>0.05;*表示组间差异显著,P<0.05;**表示组间差异极显著,P<0.01。图2图5同此。

    Figure  1.   Effect of AC3 on gene expression of claudins and IFN system

    Notes: Figure (a) shows the fluorescence pattern of overexpressed pEGFP-AC3-Flag (100 μm), from figure (b) to figure (i) show the expression levels of ac3, claudin c, claudin 15, claudin 18, irf3, irf7, ifn1, and ifn2 at different time points of GCRV infection after AC3-overexpressed in CIK cells for 48 h. The abscissa representeS the time of GCRV infection, and 0 h indicates the uninfected status. ns means there’s no difference between groups, P>0.05; * means there’s significant difference between groups, P<0.05; ** means there’s extremely significant difference between groups, P<0.01. It’s the same as figure 2 and figure 5.

    图  2   CIK中过表达AC3 24 h对VP7蛋白量的影响

    注:图(a)中1、3、5、7、9为对照组,2、4、6、8、10为AC3过表达组。

    Figure  2.   Effect of AC3 overexpression for 24 hours on VP7 protein levels in CIK cells

    Notes: In figure (a), 1, 3, 5, 7 and 9 are control groups, and 2, 4, 6, 8 and 10 are AC3 overexpression groups.

    图  3   AC3过表达对CIK细胞间紧密连接的影响

    注:图(a)和图(b)表示CIK转染空载24 h时的细胞透射电镜图(200 nm),图(c)和图(d)表示CIK过表达AC3 24 h时的细胞透射电镜图(200 nm);图中“-·-”表示各电镜图片中相同长度区域;“→”表示损伤的紧密连接。

    Figure  3.   Effect of AC3 overexpression on the tight junctions between CIK cells

    Notes: Figures (a) and (b) show the transmission electron microscopy images of cells 24 hours after CIK transfection with empty vector (200 nm), while figures (c) and (d) show the transmission electron microscopy images of cells 24 hours after CIK overexpression of AC3 (200 nm). “-·-” in the figure indicated the same length area in each electron microscope picture. “→” indicated damaged tight junctions.

    图  4   AC3过表达缓解GCRV对CIK紧密连接的破坏

    注:图(a)~图(c)表示转染空载CIK细胞受到GCRV感染透射电镜图(200 nm),图(d)~图(f)表示过表达AC3的CIK细胞受到GCRV感染的透射电镜图(200 nm),图中“-·-”表示各电镜图片中相同长度区域;“→”表示损伤的紧密连接。

    Figure  4.   AC3 overexpression alleviates the disruption of CIK tight junctions by GCRV

    Notes: Figures (a)−(c) shows the transmission electron microscope images of empty vector overexpression cells that infected with GCRV (200 nm), and figures (d)−(f) show AC3 overexpressed CIK cells that infected with GCRV (200 nm), “-·-” in the figure indicates the same length area in each electron microscope picture, and “→” indicates damaged tight junctions.

    图  5   AC3过表达对CIK细胞层通透性的影响

    注:图(a)表示CIK感染GCRV 24 h时的TEER值;图(b)表示在CIK内过表达AC3 48 h的TEER值;图(c)为CIK内过表达AC3 48 h且GCRV感染24 h时的TEER值;图(d)表示在HBMEC内过表达AC3 24 h的TEER值。

    Figure  5.   Effect of AC3 overexpression on the permeability of the CIK cell layer

    Notes: Figure (a) shows the TEER value of CIK cells after GCRV infection of 24 h; figure (b) shows the TEER value of CIK cells overexpressed AC3 for 48 h; figure (c) represents the TEER value at 24 h of GCRV infection when AC3 was overexpressed in CIK for 48 h; figure (d) shows the TEER value of HBMEC overexpression of AC3 at 24 h.

    表  1   qPCR引物序列

    Table  1   Primers used in the qPCR

    引物
    Primers
    引物序列(5’-3’ )
    Primer sequences (5’-3’ )
    熔解温度/℃
    Melting temperature
    β-actin-F GCTATGTGGCTCTTGACTTCG 59
    β-actin-R GGGCACCTGAACCTCTCATT 60
    AC3-F CGCTTCGACAAACTAGCAGC 58
    AC3-R CCTCCACCATAGACAAGCCC 58
    IFN1-F AAGCAACGAGTCTTTGAGCCT 58
    IFN1-R GCGTCCTGGAAATGACACCT 59
    IFN2-F TCCCGAAATCTGCACTGCAA 56
    IFN2-R CAGCTGGTTCCAGGACTCTG 58
    IRF3-F ATCTACTGGGGTCTATGCAA 53
    IRF3-R GCTGCATAAACTCCATCAAACC 56
    IRF7-F ACTAAACGCATCCTAGACAGT 56
    IRF7-R CTTTACACTTGTCCTGACGGAA 57
    Claudin 15-F ATTCTGGGTTTGCTGTCCGT 59
    Claudin 15-R GGCTGATTTTGCCCTTCGTC 60
    Claudin 18-F TTTGCAGCCACGGTTATGGA 57
    Caudin 18-R CCGGACACCTCGCAATTCTT 59
    Claudin c-F GTGGTTCAGAGTACCGGACA 58
    Claudin c-R GCAAGGACACCCACGATGAT 58
    下载: 导出CSV
  • [1]

    Dai Y L, Li Y Q, Hu X, et al. Nonstructural protein NS17 of grass carp reovirus Honghu strain promotes virus infection by mediating cell-cell fusion and apoptosis[J]. Virus Research, 2023, 334: 199150. DOI: 10.1016/j.virusres.2023.199150

    [2]

    Li P W, Zhang J, Chang M X. Structure, function and immune evasion strategies of aquareoviruses, with focus on grass carp reovirus[J]. Reviews in Aquaculture, 2024, 16(1): 410 − 432. DOI: 10.1111/raq.12844

    [3] 郑德崇,黄琪琰,蔡完其,等. 草鱼出血病的组织病理研究[J]. 水产学报,1986,10(2):151 − 159.

    Zheng D C, Huang Q Y, Cai W Q, et al. Histopathological studies on the Hemorrage disease of grass carp[J]. Journal of fisheries of China, 1986, 10(2): 151 − 159.

    [4] 潘攀. 登革病毒诱导血管渗漏相关分子机制研究[D]. 武汉:武汉大学,2019.

    Pan P. Molecular mechanism of vascular leakage induced by Dengue virus[D]. Whan: Wuhan University, 2019.

    [5]

    Liao Z W, Wan Q Y, Su H, et al. Pattern recognition receptors in grass carp Ctenopharyngodon idella: Ⅰ. Organization and expression analysis of TLRs and RLRs[J]. Developmental & Comparative Immunology, 2017, 76: 93 − 104.

    [6]

    Lu L F, Li Z C, Zhang C, et al. Grass carp reovirus (GCRV) giving its all to suppress IFN production by countering MAVS signaling transduction[J]. Frontiers in Immunology, 2020, 11: 545302. DOI: 10.3389/fimmu.2020.545302

    [7]

    Bonney S, Seitz S, Ryan C A, et al. Gamma interferon alters junctional integrity via Rho kinase, resulting in blood-brain barrier leakage in experimental viral encephalitis[J]. mBio, 2019, 10(4): e01675 − 19.

    [8]

    Lynn K S, Peterson R J, Koval M. Ruffles and spikes: control of tight junction morphology and permeability by Claudins[J]. Biochimica et Biophysica Acta-Biomembranes, 2020, 1862(9): 183339. DOI: 10.1016/j.bbamem.2020.183339

    [9] 许凡. 草鱼(Ctenopharyngodon idellus)肠道紧密连接蛋白基因克隆与表达活性分析[D]. 苏州:苏州大学,2013.

    Xu F. Cloning and expression activity analysis of the tight junction protein genes of grass carp, Ctenopharyngodon idellus[D]. Suzhou: Suzhou University, 2013.

    [10]

    Van Itallie C M, Anderson J M. Claudins and epithelial paracellular transport[J]. Annual Review of Physiology, 2006, 68: 403 − 429. DOI: 10.1146/annurev.physiol.68.040104.131404

    [11]

    Hayashi D, Tamura A, Tanaka H, et al. Deficiency of claudin-18 causes paracellular H+ leakage, up-regulation of interleukin-1β, and atrophic gastritis in mice[J]. Gastroenterology, 2012, 142(2): 292 − 304. DOI: 10.1053/j.gastro.2011.10.040

    [12] 杨琰茗,杨雅清,宋杲,等. 腺苷酸环化酶的研究进展[J]. 临床与病理杂志,2019,39(2):390 − 394. DOI: 10.3978/j.issn.2095-6959.2019.02.026

    Yang Y M, Yang Y Q, Song G, et al. Research progress of adenylate cyclase[J]. Journal of Clinical and Pathological Research, 2019, 39(2): 390 − 394. DOI: 10.3978/j.issn.2095-6959.2019.02.026

    [13] 黄丽妹,朱建梁,孙敏. 哺乳动物腺苷酸环化酶亚型的研究进展[J]. 国际病理科学与临床杂志,2011,31(2):161 − 166.

    Huang L M, Zhu J L, Sun M. Research progress of adenylyl cyclase isoforms in mammals[J]. International Journal of Pathology and Clinical Medicine, 2011, 31(2): 161 − 166.

    [14]

    Schlegel N, Waschke J. cAMP with other signaling cues converges on Rac1 to stabilize the endothelial barrier— a signaling pathway compromised in inflammation[J]. Cell and Tissue Research, 2014, 355(3): 587 − 596. DOI: 10.1007/s00441-013-1755-y

    [15]

    Tang H, Sun M X, Duan W, et al. Nucleophosmin 1a translocated from nucleus to cytoplasm and facilitate GCRV replication[J]. Fish & Shellfish Immunology, 2023, 142: 109153.

    [16] 于淼. 海带(Saccharina japonica)内参基因筛选及部分管家基因的系统进化分析[D]. 青岛:中国海洋大学,2013.

    Yu M. The selection of reference genes in Saccharina japonica and phylogenetic analysis of partial housekeeping genes[D]. Qingdao: Ocean University of China, 2019.

    [17]

    Su H, Su J G. Cyprinid viral diseases and vaccine development[J]. Fish & Shellfish Immunology, 2018, 83: 84 − 95.

    [18]

    Sun M X, Li Y L, Tang H, et al. GMPR2-MDA5 interaction bridged the cell junction and anti-GCRV immune[J]. Aquaculture, 2024, 591: 741152. DOI: 10.1016/j.aquaculture.2024.741152

    [19]

    Tsukita S, Tanaka H, Tamura A. The claudins: from tight junctions to biological systems[J]. Trends in Biochemical Sciences, 2019, 44(2): 141 − 152. DOI: 10.1016/j.tibs.2018.09.008

    [20]

    Rajagopal N, Nangia S. Unique structural features of claudin-5 and claudin-15 lead to functionally distinct tight junction strand architecture[J]. Annals of the New York Academy of Sciences, 2022, 1517(1): 225 − 233. DOI: 10.1111/nyas.14891

    [21]

    Sweerus K, Lachowicz-Scroggins M, Gordon E, et al. Claudin-18 deficiency is associated with airway epithelial barrier dysfunction and asthma[J]. Journal of Allergy and Clinical Immunology, 2017, 139(1): 72 − 81. DOI: 10.1016/j.jaci.2016.02.035

    [22]

    LaFemina M J, Sutherland K M, Bentley T, et al. Claudin-18 deficiency results in alveolar barrier dysfunction and impaired alveologenesis in mice[J]. American Journal of Respiratory Cell and Molecular Biology, 2014, 51(4): 550 − 558. DOI: 10.1165/rcmb.2013-0456OC

    [23]

    Roberts O L, Dart C. cAMP signalling in the vasculature: the role of Epac (exchange protein directly activated by cAMP)[J]. Biochemical Society Transactions, 2014, 42(1): 89 − 97. DOI: 10.1042/BST20130253

    [24]

    Spindler V, Peter D, Harms G S, et al. Ultrastructural analysis reveals cAMP-dependent enhancement of microvascular endothelial barrier functions via Rac1-mediated reorganization of intercellular junctions[J]. The American Journal of Pathology, 2011, 178(5): 2424 − 2436. DOI: 10.1016/j.ajpath.2011.01.014

    [25]

    Bonjardim C A. Interferons (IFNs) are key cytokines in both innate and adaptive antiviral immune responses—and viruses counteract IFN action[J]. Microbes and Infection, 2005, 7(3): 569 − 578. DOI: 10.1016/j.micinf.2005.02.001

    [26]

    Feng X L, Su J G, Yang C R, et al. Molecular characterizations of grass carp (Ctenopharyngodon idella) TBK1 gene and its roles in regulating IFN-Ⅰ pathway[J]. Developmental & Comparative Immunology, 2014, 45(2): 278 − 290.

    [27]

    Li Y G, Tang H, Sun M X, et al. The SIDT2/MDA5/IFN axis contributes to virus resistance in teleost fish[J]. Aquaculture, 2024, 583: 740568. DOI: 10.1016/j.aquaculture.2024.740568

    [28]

    Ohta K, Saka N, Fukasawa M, et al. Hazara orthonairovirus nucleoprotein facilitates viral cell-to-cell spread by modulating tight junction protein, claudin-1[J]. Frontiers in Microbiology, 2023, 14: 1192956. DOI: 10.3389/fmicb.2023.1192956

    [29]

    Oliver J A. Adenylate cyclase and protein kinase C mediate opposite actions on endothelial junctions[J]. Journal of Cellular Physiology, 1990, 145(3): 536 − 542. DOI: 10.1002/jcp.1041450321

    [30]

    Ogawa S, Koga S, Kuwabara K, et al. Hypoxia-induced increased permeability of endothelial monolayers occurs through lowering of cellular cAMP levels[J]. American Journal of Physiology, 1992, 262(3): C546 − C554. DOI: 10.1152/ajpcell.1992.262.3.C546

图(5)  /  表(1)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  7
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-19
  • 修回日期:  2024-09-18
  • 刊出日期:  2024-12-24

目录

/

返回文章
返回