基于适配体的纳米金比色法快速检测河豚毒素

    Rapid detection of tetrodotoxin by aptamer-based gold nanoparticles colorimetric method

    • 摘要:
      背景 河豚毒素(TTX)是一种强效神经毒素,广泛存在于河鲀等海洋生物中,误食后可引发呼吸衰竭,甚至会危及生命,因此,开发快速、高效、灵敏的TTX检测技术对保障食品安全至关重要。
      目的 构建一种基于核酸适配体修饰的金纳米颗粒(AuNPs)传感器的简便、可视化的比色检测法。
      方法 用柠檬酸三钠还原法制备出AuNPs并通过透射电子显微镜和紫外吸收光谱对其进行观测,适配体(Apt)通过静电吸附于AuNPs表面,在一定程度上保护AuNPs于高盐环境中不发生聚集变色,当TTX存在于体系中时,与Apt特异性结合,使AuNPs聚集并变色,优化实验条件后,紫外法测定不同TTX浓度下A620/A521值,建立线性回归方程并计算检测限,进行特异性分析与实际样品检测。
      结果 所制备的AuNPs颗粒大小均匀,粒径约为15 nm,其最大吸收峰位于521 nm。在此基础上,构建了基于适配体- AuNPs比色传感器的可视化TTX检测方法。经过对实验条件的优化,确定的最佳实验参数如下:AuNPs最佳体积分数45%、NaCl最佳浓度300 mmol/L、NaCl最佳反应时间10 min、适配体最佳浓度80 nmol/L、适配体最佳孵育时间25 min、TTX与适配体最佳孵育时间20 min、TTX与适配体孵育的最佳温度10 ℃、TTX与适配体孵育的最佳pH值5。在优化后的实验条件下对TTX进行检测,结果表明,TTX浓度在19.53~312.5 ng/mL范围内,与其对应的A620/A521值呈现良好的线性关系。其线性相关系数R2=0.995 7,检测限为12.97 ng/mL。在加标回收实验中,TTX 的加标回收率为104.2%~108.4%,相对标准偏差(RSD)为0.85%~1.77%。
      结论 本研究构建了一种基于适配体的AuNPs比色法用于检测TTX的含量,此方法有望为TTX检测提供一种简便快捷、具备可视化特点且准确性较高的检测手段。

       

      Abstract:
      Background Tetrodotoxin (TTX), a potent neurotoxin widely distributed in marine organisms such as pufferfish, poses a significant public health threat caused by accidental consumption of TTX-contaminated aquatic products. This toxin can induce respiratory failure and fatal outcomes, underscoring the urgent need for highly efficient and sensitive detection technologies to ensure food safety.
      Objective To construct a simple, visual colorimetric detection method based on aptamer-modified gold nanoparticles (AuNPs) sensor.
      Methods AuNPs were prepared by the sodium citrate reduction method and characterized by transmission electron microscopy (TEM) and ultraviolet-visible (UV-Vis) absorption spectroscopy. Aptamers (Apt) were adsorbed onto the surface of AuNPs through electrostatic interaction, which protected AuNPs from aggregation and color change in high-salt environments to a certain extent. When TTX existed in the system, it specifically bound to Apt, causing AuNPs to aggregate and change color. After optimizing the experimental conditions, the ratio of A620/A521 at different TTX concentrations was determined by UV spectroscopy to establish a linear regression equation, calculate the limit of detection, and perform specificity analysis and test sample detection.
      Results The prepared AuNPs had uniform particle size (approximately 15 nm) and a maximum absorption peak at 521 nm. Based on this, a visual TTX detection method using an aptamer-AuNPs colorimetric sensor was constructed. The optimal experimental parameters determined through condition optimization were as follows: AuNPs volume fraction of 45%, NaCl concentration of 300 mmol/L, NaCl reaction time of 10 min, aptamer concentration of 80 nmol/L, aptamer incubation time of 25 min, TTX-aptamer incubation time of 20 min, incubation temperature of 10 °C, and pH of 5. Under the optimized conditions, TTX detection showed a good linear relationship between TTX concentration (19.53~312.5 ng/mL) and the corresponding A620/A521 value, with a linear correlation coefficient (R2) of 0.995 7 and a limit of detection (LOD) of 12.97 ng/mL. In the spike recovery experiments, the recovery rates of TTX ranged from 104.2% to 108.4%, with relative standard deviations (RSD) of 0.85%~1.77%.
      Conclusion This study developed an aptamer-based AuNPs colorimetric method for TTX detection, which is expected to provide a simple, rapid, visual, and accurate approach for TTX analysis.

       

    /

    返回文章
    返回