基于Res-PGAUnet的沿海养殖池塘遥感提取研究

    Study on remote sensing extraction of coastal aquaculture ponds based on Res-PGAUnet

    • 摘要:
      背景 沿海养殖池塘常与盐田、河道等地物混杂,加之池塘形态多样、尺度不一,采用传统遥感提取方法面临提取精度不足、抗干扰能力弱、自动化程度低等技术瓶颈。深度学习方法能通过卷积层自动从影像中学到丰富的光谱与空间特征,从而实现大范围精准分类,提高提取任务的自动化程度。
      目的 实现面向复杂干扰地物场景养殖池塘的精准、高效自动化提取。
      方法 本研究基于高分二号(GF-2)卫星影像数据,以福建省漳州市旧镇湾以南沿海池塘养殖区为研究区域,在U-Net模型基础上,融合残差结构、金字塔池化、引导分支与双注意力机制,构建Res-PGAUnet模型,并进行精度分析与大范围应用测试。
      结果 旧镇湾以南模型的核心改进模块(残差结构、金字塔池化、引导分支和双注意力机制)均对性能提升有显著贡献,使得Res-PGAUnet模型在面对河道、盐田、海水等多种干扰地物时,表现出更强的抗干扰能力和鲁棒性,IoU与F1-score分别达到0.85400.9213,能有效减少误提和漏提,改善了小目标高位池漏提和边界粘连。
      结论 大范围泛化测试进一步证实了Res-PGAUnet模型在实际应用中的潜力,该模型可为池塘养殖空间信息的精准监测与渔业可持续发展提供技术支撑。

       

      Abstract:
      Background The coastal aquaculture ponds are often mixed with salt fields and river channels, and the ponds have different forms and scales, which make the traditional remote sensing extraction methods face the technical bottlenecks such as insufficient extraction accuracy, weak anti-interference ability and low degree of automation. Deep learning methods, however, can automatically learn rich spectral and spatial features from images through convolutional layers, enabling large-scale precise classification and enhancing the automation of extraction tasks.
      Objective This study aimed to realize accurate and efficient automated extraction of aquaculture ponds in complex interference scenarios.
      Methods This study utilizes domestic GF-2 high-resolution remote sensing imagery data. Building upon the U-Net model, we constructed the Res-PGAUnet model for the coastal pond aquaculture zone in the south of Jiuzhen Bay in Zhangzhou City, Fujian Province. The model integrates residual structure, pyramid pooling, guided branches, and dual attention mechanisms, with precision analysis and large-scale application testing conducted.
      Results Core improvement modules (Residual structure, pyramid pooling, guided branches, and dual attention mechanism) significantly enhanced performance. Their combined effect enables Res-PGAUnet to demonstrate stronger anti-interference capability and robustness when handling diverse interference objects such as rivers, salt pans, and seawater. The IoU and F1-score reached 0.8540 and 0.9213 respectively, effectively reducing false positives and negatives while addressing small target omissions and boundary adhesion issues.
      Conclusion Large-scale generalization tests further validate the practical potential of Res-PGAUnet. The model provides reliable technical support for precise monitoring of pond aquaculture spatial information and sustainable fishery development.

       

    /

    返回文章
    返回