鱼类肠道微生物多样性及其与环境因子关系的研究进展
Research progress on gut microbial diversity of fish and its relationship with environmental factors
通讯作者: 林龙山(1974-),男,研究员,研究方向为鱼类生物学和生态学.E-mail:linlsh@tio.org.cn
收稿日期: 2021-12-6
基金资助: |
|
Received: 2021-12-6
作者简介 About authors
向佳丽(1995-),女,硕士研究生,研究方向为南极鱼类肠道微生物.E-mail:959818199@qq.com
早期认为鱼类肠道中存在寥寥可数、结构简单的微生物群落,随着鱼类肠道微生态学的发展,人们逐渐认识到鱼类肠道中存在着种类繁多、数量庞大的微生物群落。复杂的生活环境、不同的发育阶段、多变的食物来源等因素都会导致鱼类肠道微生物多样性及结构发生变化。鱼类肠道微生物与栖息环境所形成的微生态系统在保持动态平衡时,能够维持宿主的肠道健康。大量研究显示稳态中的微生态系统能够调节肠道微生物群落的平衡、改善肠道微生物群落的组成,从而对鱼类生长发育、营养代谢、免疫调控等过程具有促进作用。本文综述了鱼类肠道微生物的研究方法、多样性和功能,总结了温度、盐度及水体饵料等环境因子对鱼类肠道微生物的影响,以期为今后鱼类肠道微生物的研究发展提供启发和参考。
关键词:
In the early days,it was thought that there were few simple microbial communities in the fish gut,but with the development of fish gut microecology,it was gradually recognized that there were a large number of diverse microbial communities in the fish gut.Complex living environments,different developmental stages,and variable food sources can lead to changes in the diversity and structure of fish gut microorganisms.The microecosystem formed by fish gut microbes and their habitat is able to maintain the host’s gut health when it is in dynamic balance.Numerous studies have shown that microecosystem in homeostasis can regulate the balance of gut microbial communities and improve the composition of gut microbial communities,thus promoting fish growth and development,nutrient metabolism,immune regulation and other processes.This paper reviewed the research methods,diversity and functions of fish gut microorganisms,and summarized the effects of environmental factors such as temperature,salinity and food in water on fish gut microorganisms,in order to provide inspiration and reference for future research development of fish gut microorganisms.
Keywords:
本文引用格式
向佳丽, 李渊, 宋普庆, 刘世刚, 王芮, 李海, 妙星, 张然, 林龙山.
XIANG Jiali, LI Yuan, SONG Puqing, LIU Shigang, WANG Rui, LI Hai, MIAO Xing, ZHANG Ran, LIN Longshan.
水环境中有近海、大洋、深海、极地、红树林、珊瑚礁等多样的生态类群,这些生态系统又可以通过相互作用产生连通性,从而具有更高的动态性和空间异质性[1]。鱼类为适应这种多变的生态环境和食物来源,其肠道微生物菌群呈现出更为丰富的多样性[2]。研究发现肠道微生物的动态平衡状态在鱼类生长发育过程中起着非常重要的作用,稳态中的肠道微生物菌群可以更好地帮助鱼类消化吸收营养物质,调控鱼体的免疫系统,维持机体的健康[3]。近年来,随着对肠道微生物探索的深入,研究发现肠道菌群与疾病的发生、发展有着密切的关系,环境因素作为联系两者之间的桥梁,在肠道微生物的多样性及结构功能方面起到关键作用[4]。因此,研究鱼类肠道微生物菌群结构和功能的多样性及其与周围环境之间的关系可以为疾病的有效防治提供科学的理论基础。
本文系统总结了国内外鱼类肠道微生物的研究方法、多样性以及功能,着重阐述了鱼类肠道微生物与水环境之间的关系,以期为今后鱼类肠道微生物的研究发展提供参考。
1 鱼类肠道微生物的研究方法
早期对鱼类肠道微生物的研究主要以纯培养方法等微生物培养技术为主,通过模拟肠道内的厌氧环境,以肠道内的肠黏膜或者肠道内容物为研究对象,对肠道中的微生物群落进行定性或者定量分析[5]。由于鱼类肠道中存在多种微生物菌群和较为丰富的营养物质,并且要严格控制厌氧培养条件,因此,采用传统的微生物培养方法来检测肠道微生物菌群具有一定的局限性,其应用多是对单一或多个鱼类肠道微生物菌群进行分类鉴定及群落结构组成的研究[6]。如王成强等[7]从健康珍珠龙胆石斑鱼[♀褐点石斑鱼(Epinephelus fuscoguttatus)×♂鞍带石斑鱼(Epinephelus lanceolatus)]肠道中分离纯化获得4株疑似枯草芽孢杆菌(Bacillus subtilis)的菌株(B1、B2、B3和B4),并进行了菌落形态、菌株理化性质等方面的研究,结果表明在理化性质方面,4株菌的实验结果均符合枯草芽孢杆菌的生化特性,并结合菌落形态,初步证明4株分离菌可能均为枯草芽孢杆菌。
近几年来,随着分子遗传学的迅速发展,其在微生物分子生态学研究中得到了成功应用,主要用于微生物群落多样性和结构组成分析,并对微生物群落功能进行预测。微生物分子生态学常用的技术手段主要有指纹图谱技术和16S rRNA基因克隆文库技术。16S rRNA基因克隆文库技术可以较为直接地观测到微生物菌群的动态变化,由于该方法获得的条带多态性高,结果较为稳定,因此常被应用于菌株的鉴定、微生物群落多样性分析以及功能预测。如Eckburg P B等[8]利用16S rRNA基因克隆文库技术全面分析了肠黏膜和肠道内容物中微生物类群结构和功能。但此方法用通用引物进行PCR扩增时,有些肠道微生物难以被扩增,并且肠道微生物菌群结构繁多,种类复杂,增加了工作量以及测序分析结果的难度。因此需要对电泳条带构建特异性克隆文库,才能获得电泳图谱中的微生物群落信息,实验操作过程较为复杂、繁琐[9]。
当前,随着测序技术和生物信息学分析的快速发展,基于测序的高通量测序技术逐渐成为研究鱼类肠道微生物菌群的热点方法。高通量测序技术能够获取样品中所有核酸物质的序列信息,通过测序深度和系统发育关系来分析判断肠道微生物群落组成的结构以及多样性,还能检测出肠道中的优势菌株、稀有菌株和一些未知新种[10],该技术被广泛应用于鱼类肠道微生物菌群多样性及肠道微生物菌群与水环境因子构成的微生态系统对鱼体的影响等研究中。目前高通量测序技术能精确到种的分类阶元的结果较少,通常在门和属的水平上进行微生物组成及丰度分析,在门的水平上展示样本菌群组成是否合理、在属的水平上进行精细划分,展示出样本菌群的组成及丰度变化。如油九菊等[11]运用高通量测序技术分析了东海带鱼肠道微生物菌群多样性,结果显示在门的水平上,相对丰度最高的是变形菌门(Proteobacteria)和厚壁菌门(Firmicutes);在属的水平上,以弧菌科(Vibrionaceae)的发光杆菌属(Photobacterium)、梭菌科(Clostridiaceae)的分节丝状菌(Candidatus arthromitus)为主。
2 鱼类肠道微生物多样性
鱼类的消化道主要是由口咽腔、食道、胃、肠及肛门等五部分组成,肠道是鱼体内的一种管状消化器官,被认为是动物体内最大的消化、吸收、免疫以及内分泌器官[12]。肠道微生物含有几百万个基因,结构复杂,种类繁多,拥有生物体的“第二基因组”之称[13]。研究发现肠道微生物并不是与生俱来,而是水环境和饵料中的微生物随着鳃和口腔进入鱼体内,与鱼体发生适应性生理生化作用,最终定植在鱼类肠道中。Hansen G H等[14]研究发现大西洋鳕(Gadus morhua)和大西洋庸鲽(Hippoglossus hippoglossus)的卵中不存在微生物的定植,这可能与鱼类生长发育早期消化腺还未形成有关。Roeselers G等[15]研究发现,在不同生长环境条件下,斑马鱼(Danio rerio)肠道微生物中都存在相似的核心微生物菌群。因此,鱼类肠道中早期定植的微生物菌群与成年后达到动态平衡的微生物菌群的组成具有相关性[16]。
鱼类肠道微生物菌群主要由好氧菌、厌氧菌、兼性厌氧菌和专性厌氧菌组成,每克肠道内容物约含有107~1011个微生物,其中细菌是主要类群[17]。在鱼类肠道微生物中,淡水鱼类肠道细菌数量为105~108 CFU/g;海水鱼类肠道细菌数量为106~108 CFU/g[18],革兰氏阴性细菌的数量高于革兰氏阳性细菌的数量[17]。研究发现鱼类肠道中占优势地位的菌群为拟杆菌门(Bacteroidetes)、变形菌门、放线菌门(Actinobacteria)、梭杆菌门(Fusobacteria)、厚壁菌门和疣微菌门(Verrucomicrobia)等[19],其中厚壁菌门、变形菌门、拟杆菌门在不同鱼类肠道中均有发现,为其核心微生物菌群,能够有效调控鱼类肠道微生物的多样性及群落结构[20]。鱼类处在一个复杂多变的生态环境中,栖息地、温度、饵料以及肠道结构等发生变化都会使得鱼类肠道菌群多样性发生改变[21]。在淡水鱼类肠道中占优势地位的菌群是气单胞菌属(Aeromonas)、假单胞菌属(Pseudomonas)和拟杆菌属(Bacteroides),其次是肠杆菌属(Enterobacteriaceae)、不动杆菌属(Acinetobacter)、梭菌属(Clostridium)等[22]。祭仲石[23]在分析不同放养模式下鲢(Hypophthalmichthys molitrix)肠道微生物群落多样性及结构时,发现鲢鳙混养模式下鲢肠道微生物多样性高于鲢单养模式,其肠道微生物主要包括拟杆菌门、厚壁菌门、变形菌门、疣微菌门、蓝细菌门(Cyanobacteria),其中优势菌群是变形菌门。黄丽丽等[24]对新疆额尔齐斯河流域中野生鲤(Cyprinus carpio)肠道细菌的多样性及其群落结构组成进行研究,结果显示在门水平上,鲤肠道微生物中主要以厚壁菌门、变形菌门、拟杆菌门和放线菌门为主,前肠和中肠中优势菌群是变形菌门,而后肠中变形菌门丰度减少,厚壁菌门丰度增加;在属水平上,前肠和中肠以硫杆菌属(Acidithiobacillus)为主,后肠以肉食杆菌属(Carnobacterium)为主。因生活环境的不同,海洋鱼类肠道微生物多样性与淡水鱼类存在明显差异,主要由变形菌门、放线菌门、梭杆菌门、厚壁菌门等组成[25]。席晓晴[26]对马鞍列岛海域的鱼类肠道微生物多样性进行研究,发现鱼免(Miichthys miiuy)、日本黄姑鱼(Nibea japonica)、皮氏叫姑鱼(Johnius grypotus)、褐菖鲉(Sebastiscus marmoratus)、海鳗(Muraenesox cinereus)和星康吉鳗(Conger myriaster)的肠道微生物组成主要是厚壁菌门、变形菌门、拟杆菌门、放线菌门、酸杆菌门(Acidobacteria)和绿弯菌门(Chloroflexi)等6个菌门。马英等[27]对大黄鱼(Larimichthys crocea)二月龄鱼苗肠道细菌进行了计数分离培养,结果显示大黄鱼二月龄鱼苗每克肠道样品中的微生物约为1.315×108个,大黄鱼肠道微生物菌群多样性相对较低,优势菌群为弧菌属(Vibrio)中的塔式弧菌(Vibrio tubiashii)以及不动杆菌属中的抗辐射不动杆菌(Acinetobacter radioresistens)。此外,在一些鱼类肠道微生物中也发现了较高含量的酵母菌,在海洋鱼类肠道酵母菌菌群中,主要包括热带假丝酵母菌(Candida tropicalisare)、皮状丝孢酵母(Trichosporon cutaneum)、梅奇酵母菌(Metschnikowia zobelii)[28]。鱼类肠道微生物的种类丰富,对同一科不同种鱼类的研究可以发现,虽然肠道微生物的优势菌群门类相似,但各种微生物的相对丰度存在较大差异,反之不同环境下的同一物种胃肠道内的菌群亦略有不同[29]。
3 鱼类肠道微生物的功能
3.1 营养功能
鱼类肠道微生物与宿主之间存在互利共生的关系,鱼类肠道微生物通过吸收宿主自身营养物质或者分解宿主肠道内的食物团来合成自身赖以生存的营养物质[30],同时健康鱼类的肠道微生物可以分泌淀粉酶、蛋白酶、纤维素酶、磷酸酶、脂肪酶等多种消化酶[31],这些消化酶作为鱼类肠道内消化酶的一个重要来源,可以帮助其更好地消化吸收蛋白质、脂质、糖类等大分子营养物质。冯雪[32]以草鱼(Ctenopharyngodon idellus)和银鲫(Carassius auratus gibelio)为实验对象,分别检测了从草鱼和银鲫肠道中分离的180株细菌的蛋白酶、脂肪酶、淀粉酶和纤维素酶的产酶能力,结果显示两种鱼肠道内可分泌胞外消化酶的细菌有气单胞菌、弧菌、芽孢杆菌(Bacillus)、假单胞菌四个种属,研究也表明肠道中细菌分泌的胞外消化酶促进了两种鱼对饵料的消化吸收。侯进慧等[33]从健康鲫鱼肠道内分离出62株细菌菌株,有26株菌株能够生产淀粉酶,占筛选菌株的41.94%,其中菌株F2产酶活性较高,分泌的淀粉酶在pH 7、温度32℃时表现出最大酶活力,这有助于鲫鱼更好地消化吸收饲料中的淀粉。
鱼类肠道中的微生物菌群还可以合成多种维生素,维生素主要作为辅酶参与和保护细胞、组织及器官的正常生理生化过程[34]。缺少维生素会扰乱机体的功能发挥及代谢调节,导致机体发生病变,进而影响鱼体正常的生长发育[35]。Chen Y J等[36]在对大口黑鲈(Micropterus salmoides)肠道微生物的研究中发现,饲喂添加148 mg/kg维生素C的饲料能够提高大口黑鲈肠道微生物对维生素E的利用率、降低肠道内的脂质积累,从而保护肠道内多不饱和脂肪酸免受过氧化,促进大口黑鲈生长发育。此外,一些鱼类肠道微生物菌群在调节鱼体脂质的代谢、运输和储存中也起到重要作用,Semova I等[37]在对无菌斑马鱼的研究中发现,饵料会改变鱼类肠道微生物多样性和组成,促进肠上皮细胞对脂肪酸的吸收,增加脂滴在肠上皮细胞中的积累,从而增加肠道组织中脂肪酸的含量。
3.2 免疫调节功能
鱼类免疫系统可以调节肠道微生物菌群的组成和结构,促进有益菌的生长繁殖,维持肠道菌群的平衡,同时肠道有益菌对肠黏膜的健康以及鱼类免疫系统的发育起着关键作用,可以控制病原菌的过度增殖,激活鱼类免疫应答功能。肠道有益菌通过抑制病原菌的生长繁殖,达到保护鱼体不受病原体感染的目的,这就像一道保护着宿主健康的屏障[38]。王融等[39]通过研究鱼类肠道乳酸菌的抑菌特性发现,肠道乳酸菌对病原菌具有定植拮抗作用,肠道乳酸菌会分泌胞外物质隔绝病原菌与胃肠道黏膜接触,同时与病原菌竞争营养物质,分泌抗菌活性代谢物,从而抑制病原菌的生长繁殖。Sugita H等[40]对从7种鱼类肠道中分离出的302株菌株进行抗菌实验,结果显示除了不动杆菌属、棒杆菌属(Corynebacterium)外,其他菌株对18种靶细菌都有一定的抗菌活性,其中假单孢菌属、梭状芽孢杆菌(Clostridium prazmowski)可同时抑制7~12种靶细菌。Huys L等[41]从大菱鲆(Scophthalmus maximus)的肠道中分离出2株细菌,发现在大菱鲆肠道中其比鳗弧菌(Vibrio anguillarum)具有更强的黏附和生长能力,可以与鳗弧菌竞争营养物质,从而预防鳗弧菌的感染。
鱼类免疫系统可以识别定植于肠道中的原籍菌群和侵入鱼体中的外籍菌群,这可能是由于原籍菌群与肠道细胞有相似的抗原性或者与原籍菌群在鱼类免疫系统尚未发育成熟时已定植于肠道内有关[42]。鱼类肠道微生物菌群与肠黏膜免疫系统相互协作可以进一步提高鱼体的免疫功能,刺激免疫信号通道、相关受体蛋白及非特异性因子表达,从而清除宿主病原体[43]。张燕玉等[44]以海藻希瓦氏菌(Shewanella algae)感染半滑舌鳎(Cynoglossus semilaevis),研究发现感染海藻希瓦氏菌前后,半滑舌鳎肠道优势菌门无明显变化,但肠道微生物菌群多样性及菌群结构发生改变,肠道组织中免疫功能相关基因(HSPA1A和HINT1)表达紊乱,说明肠道微生物菌群参与了机体的免疫应答及疾病发生过程。迟骋[38]从鲤肠道中分离出360株细菌,进一步对优势菌株BA-1、BA-2和BA-3进行注射攻毒实验,结果显示优势菌BA-1和BA-3可以使鲤的先天免疫指标以及免疫相关基因的相对表达量显著增加,被病原菌嗜水气单胞菌(Aeromonas hydrophila)感染后,其存活率也显著提高,表明这两株优势菌对鲤先天免疫应答产生了积极的影响。杜东东[45]以36尾投喂过添加盐单胞菌PHB(Halomonas-PHB)饲料的珍珠龙胆石斑鱼的肠道进行鳗弧菌攻毒实验,对未攻毒、攻毒24 h、攻毒48 h的石斑鱼进行过氧化氢酶(CAT)和超氧化歧化物(SOD)相关抗氧化基因、先天性免疫相关基因(TLR3、TLR22、1L-1和1L-10)和获得性免疫相关基因(MHCⅠ和MHCⅡ)表达分析实验,结果表明盐单胞菌PHB提高了石斑鱼抗弧菌能力,肠道中(1L-1、1L-10)的基因表达量得到显著提升,提高了石斑鱼的免疫能力和促进了相关免疫基因的表达。
4 鱼类肠道微生物与水环境的关系
4.1 鱼类肠道微生物与温度的关系
鱼类是变温动物,肠道微生物菌群的多样性及结构会随水温的变化而发生变化。Jones J等[48]对植食性海洋鱼类褐篮子鱼(Siganus fuscescens)的研究发现,温带水域、亚热带水域和热带水域的鱼类肠道微生物的群落结构及多样性均存在差异。此外,褐篮子鱼的肠道微生物菌群结构也存在明显的空间异质性,这可能是为了适应不同的生存环境。曾楠楠[49]分别采集了22、28、34℃温度条件下养殖的吉富罗非鱼(Oreochromis niloticus)的肠道样品,结果表明在不同温度条件下吉富罗非鱼肠道菌群的多样性存在较大的相似性,但在22、28℃温度条件下吉富罗非鱼肠道菌群的丰富度具有显著差异,其中在28℃温度条件养殖的吉富罗非鱼肠道微生物菌群的丰度达到最高。汪倩等[50]研究低温胁迫下不同品系暗纹东方鲀(Takifugu fasciatus)肠道微生物菌群结构及多样性的差异,结果显示通过持续降低水温得到的耐寒型暗纹东方鲀“中洋1号”肠道微生物多样性显著低于野生型暗纹东方鲀,表明低温对降低鱼类肠道微生物菌群多样性有一定的影响。
鱼类肠道微生物菌群的多样性、结构及丰度也具有季节性差异。在对奥尼罗非鱼(Oreochromis aureus)肠道微生物菌群的含量测定实验中发现,在夏、秋、冬三个季节中鱼类肠道内细菌丰度存在较大差异[51]。毛婕[52]以12个月份的黄鳍东方鲀(Takifugu xanthopterus)肠道微生物菌群为研究对象,结果显示全年黄鳍东方鲀肠道微生物样品中共有菌群为变形菌门、厚壁菌门、拟杆菌门、螺旋体门、无壁菌门(Tenericutes)、放线菌门、绿弯菌门、梭杆菌门和蓝细菌门;3月份肠道原核微生物物种最多,7月份肠道原核微生物物种最少;春季变形菌门含量最高,秋季变形菌门含量最低,弧菌属在春季和夏季含量较高。
4.2 鱼类肠道微生物与水体无机盐的关系
水体中的氨氮、亚硝酸盐、水体重金属离子等无机盐都会对鱼类肠道微生物的多样性及丰度产生影响。当水环境因子发生变化时,肠道微生态环境也会随之波动,进而造成鱼体免疫及代谢紊乱。郭倩倩[53]用不同浓度铜离子对鲤进行暴露,结果显示鲤肠道中梭杆菌门的比例在低浓度组中显著升高;蓝细菌门、TM6、浮霉菌门(Planctomycetes)的比例在中浓度组中显著升高;厚壁菌门和拟杆菌门的比例在高浓度组中显著降低,表明水体添加铜离子之后,鱼体产生应激反应,从而影响到鱼体的健康状态和脂代谢过程。邵仙萍[54]分别选取规格一致的240尾异育银鲫和960尾团头鲂(Megalobrama amblycephala),并分别饲喂添加了不同浓度的碱式氯化铜的饲料,在室外网箱养殖56 d后,研究发现饲喂了不同浓度碱式氯化铜饲料的异育银鲫的肠道中的大肠杆菌(Escherichia coli)较不添加铜的对照组显著降低,芽孢杆菌较对照组显著升高,表明碱式氯化铜会影响肠道微生物菌群的数量;饲喂了不同浓度碱式氯化铜饲料的团头鲂的肠道微生物菌群多样性及结构相似,但与不添加铜的对照组相比,其肠道微生物菌群多样性及结构存在较大差异。同样,当以纳米铜投喂斑马鱼后,其肠道中益生菌的多样性明显被抑制,消化系统受到严重破坏[55]。因此,以水环境因子波动而导致的某些鱼类肠道微生物菌群发生的显著变化也可以作为预测鱼体健康状态的生物标志物。
4.3 鱼类肠道微生物与饵料的关系
鱼类在长期进化过程中,摄食行为逐渐异化,为了更有效地消化不同来源的食物,鱼类会形成与之相适应的肠道微生物菌群[58]。钟蕾等[59]分别用人工配合饲料和冰鲜鱼饲喂鳡(Elopichthys bambusa),研究发现用人工配合饲料饲养的鳡的肠道微生物特有条带代表种群主要为魏斯氏菌(Weissella koreensis)等,冰鲜鱼饲养的鳡的特有条带代表种群为威斯康星米勒菌(Moellerella wisconsensis)等,表明不同饵料饲养的鳡的肠道细菌多样性及结构差异较大,相似度仅为11.9%~42.6%。由益生菌制成的微生态制剂能够有效改善鱼类的肠道微生物菌群结构及多样性、维持肠道微生物菌群动态平衡、促进鱼类生长发育并且有效预防疾病的发生[60]。王纯[61]以芽孢杆菌V4和胶红酵母制作复合菌剂饲喂鲑鳟鱼,结果显示使用复合菌剂饲喂的鲑鳟鱼的肠道微生物菌群多样性有所提高,鲑鳟鱼肠道中的嗜冷杆菌属(Psychrobacter)、芽孢乳杆菌属(Sporolactobacillus)、乳球菌属(Lactococcus)及链霉菌属(Streptomyces)等益生菌的含量有效升高,同时,潜在致病菌伯克氏菌属(Burkholderia)的丰度得到有效遏制。张书环等[62]采用添加了不同浓度的枯草芽孢杆菌的饲料投喂杂交鲟,结果显示杂交鲟肠道微生物中鲸杆菌属(Cetobacterium)为优势菌群,随着枯草芽孢杆菌添加量的增加,鲸杆菌属含量下降,而邻单胞菌属(Plesiomonas)含量升高;饲料中添加枯草芽孢杆菌可以降低链球菌属(Streptococcus)、乳酸菌属(Lactobacillus)及乳球菌属的丰度,表明在一定范围内采用添加枯草芽孢杆菌的饲料投喂杂交鲟可以显著改善肠道的微生态环境,增强鱼体对血糖和脂肪的利用和转化能力。
鱼类肠道微生物菌群还可以用来指示种内和种间的食性差异[63]。Moran D等[64]在对悉尼舵(Kyphosus sydneyanus)生长发育和肠道微生物群落关系的研究中发现,其肠道微生物菌群随宿主的生长发育过程中食性的变化而变化,幼鱼主要以红藻和绿藻为食,成鱼则以褐藻为主;随着悉尼舵个体的生长发育,在食性发生转换过程中肠道微生物多样性也随之增加。李武辉[65]以团头鲂和翘嘴红鲌(Culter alburnus)人工杂交后获得了两性可育的异源二倍体正交品系鲂鲌和反交品系鲌鲂为研究对象,探究鲂鲌与鲌鲂的食性特征,结果显示在鲂鲌和鲌鲂肠道中检测到与团头鲂共有的菌群显著多于与翘嘴红鲌检测到的共有菌群;鲂鲌和鲌鲂肠道中优势菌群的丰度与草食性团头鲂接近,而与肉食性翘嘴红鲌有显著性差异,因此,鲂鲌和鲌鲂可能具有偏向于草食性团头鲂的食性特征。刘妮[66]以玫瑰高原鳅(Triplophysa rosa)为实验对象,研究发现玫瑰高原鳅属于杂食性偏肉食性鱼类,优先捕食齿额米虾(Caridina serratirostris),其肠道菌群中有与肉食性相关的菌群包括鲸杆菌属和盐单胞菌属(Halomonas);玫瑰高原鳅同时也摄食少量的植物,其肠道菌群中也有与植食性相关的柠檬酸杆菌属(Citrobacter),兼食植物说明在食物匮乏的情况下,玫瑰高原鳅能充分利用营养资源。通过了解鱼类肠道微生物菌群结构及多样性的变化特征,可以更加深入地认识到在鱼类生长发育过程中肠道微生物菌群对食物资源的选择机制。
5 研究展望
肠道微生物菌群结构及多样性的相对稳态不仅有助于改善鱼类的生长发育、基础代谢,而且一些鱼类肠道微生物可以分泌具有抗肿瘤、抗癌、抗病毒和细菌作用的免疫活性物质,拥有重要的药用价值。研究鱼类肠道微生物菌群与水环境组成的微生态系统与宿主之间的关系,对研究鱼类食性、水环境的监控与保护等都具有重要意义。因南极地区终年气候寒冷、冰川覆盖、极昼极夜等一系列极端恶劣的气候变化[67],导致原本栖息于南大洋的大多数海洋生物逐渐灭绝,只有极少数适应这种极端环境的海洋生物生存下来[68]。目前对于南极鱼类的研究成果较少且研究的鱼种有限,南极鱼亚目鱼类在几千万年的进化过程中受到持续低温及各种环境微生物和病原微生物的选择压力,其肠道微生物菌群在与宿主协同进化过程中可能会形成一些特有的组成和功能[69]。因此,通过研究南极鱼类肠道微生物的多样性、结构及其与周围环境之间的关系,可以指示海水温度、季节、盐碱度、海水深度、栖息地等因素变化对南极鱼类肠道微生物群落的潜在影响,从而摸清其变动规律,对未来的鱼类肠道微生物相关方面的研究提供理论支撑。
参考文献
Intestinal microbiota composition in fishes is influenced by host ecology and environment
[J].The digestive tracts of vertebrates are colonized by complex assemblages of micro-organisms, collectively called the gut microbiota. Recent studies have revealed important contributions of gut microbiota to vertebrate health and disease, stimulating intense interest in understanding how gut microbial communities are assembled and how they impact host fitness (Sekirov et al. 2010). Although all vertebrates harbour a gut microbiota, current information on microbiota composition and function has been derived primarily from mammals. Comparisons of different mammalian species have revealed intriguing associations between gut microbiota composition and host diet, anatomy and phylogeny (Ley et al. 2008b). However, mammals constitute <10% of all vertebrate species, and it remains unclear whether similar associations exist in more diverse and ancient vertebrate lineages such as fish. In this issue, Sullam et al. (2012) make an important contribution toward identifying factors determining gut microbiota composition in fishes. The authors conducted a detailed meta-analysis of 25 bacterial 16S rRNA gene sequence libraries derived from the intestines of different fish species. To provide a broader context for their analysis, they compared these data sets to a large collection of 16S rRNA gene sequence data sets from diverse free-living and host-associated bacterial communities. Their results suggest that variation in gut microbiota composition in fishes is strongly correlated with species habitat salinity, trophic level and possibly taxonomy. Comparison of data sets from fish intestines and other environments revealed that fish gut microbiota compositions are often similar to those of other animals and contain relatively few free-living environmental bacteria. These results suggest that the gut microbiota composition of fishes is not a simple reflection of the micro-organisms in their local habitat but may result from host-specific selective pressures within the gut (Bevins & Salzman 2011).
Microbial diversity and function in soil:from genes to ecosystems
[J].Soils sustain an immense diversity of microbes, which, to a large extent, remains unexplored. A range of novel methods, most of which are based on rRNA and rDNA analyses, have uncovered part of the soil microbial diversity. The next step in the era of microbial ecology is to extract genomic, evolutionary and functional information from bacterial artificial chromosome libraries of the soil community genomes (the metagenome). Sophisticated analyses that apply molecular phylogenetics, DNA microarrays, functional genomics and in situ activity measurements will provide huge amounts of new data, potentially increasing our understanding of the structure and function of soil microbial ecosystems, and the interactions that occur within them. This review summarizes the recent progress in studies of soil microbial communities with focus on novel methods and approaches that provide new insight into the relationship between phylogenetic and functional diversity.
珍珠龙胆石斑鱼肠道枯草芽孢杆菌的分离鉴定及产酶能力分析
[J].从健康珍珠龙胆石斑鱼肠道中分离纯化获得4株疑似枯草芽孢杆菌(Bacillus subtilis)菌株(B1、B2、B3和B4),并进行了菌落形态、菌株理化性质、16S rDNA序列和产酶能力分析等方面的研究。结果表明,在理化性质方面,4株菌的试验结果均符合枯草芽孢杆菌的生化特性,并结合菌落形态,初步证明4株分离菌可能均为枯草芽孢杆菌;同时,基因序列比对结果显示,4株菌的16S rDNA序列与已知的枯草芽孢杆菌序列相似性≥99%,最终鉴定均为枯草芽孢杆菌。经过产酶能力的试验研究发现,4株菌都具有产纤维素酶、淀粉酶和蛋白酶的能力,且B3菌株同其他3株菌相比,其产纤维素酶、淀粉酶和蛋白酶的能力均较强。因此,本试验选取B3作为具有益生菌潜力的菌株。
Diversity of the human intestinal microbial flora
[J].The human endogenous intestinal microflora is an essential "organ" in providing nourishment, regulating epithelial development, and instructing innate immunity; yet, surprisingly, basic features remain poorly described. We examined 13,355 prokaryotic ribosomal RNA gene sequences from multiple colonic mucosal sites and feces of healthy subjects to improve our understanding of gut microbial diversity. A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms. We discovered significant intersubject variability and differences between stool and mucosa community composition. Characterization of this immensely diverse ecosystem is the first step in elucidating its role in health and disease.
Comparing microarrays and next-generation sequencing technologies for microbial ecology research
[J].Recent advances in molecular biology have resulted in the application of DNA microarrays and next-generation sequencing (NGS) technologies to the field of microbial ecology. This review aims to examine the strengths and weaknesses of each of the methodologies, including depth and ease of analysis, throughput and cost-effectiveness. It also intends to highlight the optimal application of each of the individual technologies toward the study of a particular environment and identify potential synergies between the two main technologies, whereby both sample number and coverage can be maximized. We suggest that the efficient use of microarray and NGS technologies will allow researchers to advance the field of microbial ecology, and importantly, improve our understanding of the role of microorganisms in their various environments.
基于高通量测序的东海带鱼肠道菌群结构分析
[J].以东海带鱼为研究对象,利用高通量测序技术,分析了其肠道菌群结构特征。测序结果共获得36 129条有效序列,聚类到245个OUTs,有效序列中有4 条序列(0.01%) 无法进行物种分类,其余分属于16 个细菌门,共77个科、127个属。在门的水平上,相对丰度最高的是变形菌门(Proteobacteria,52.30%) ,其次为厚壁菌门(Fimiicutes,30.66%) ; 在属的水平上,以狐菌科(Vibrionaceae,49.38% ) 的发光杆菌属(Photohacterium,47.90%)、梭菌科( Clostridiaceae_ 1,25.40% ) 的分节丝状菌(Candidatus_ Arthromitus, 17.04% ) 为主。OTU稀释曲线逐渐趋于平缓,且覆盖率God’s Coverage指数为100%,表明样品测序深度足够大,OUT数量接近实际情况。
Bacterial colonization of cod(Gadus morhua L.)and halibut(Hippoglossus hippoglossus)eggs in marine aquaculture
[J].Aquaculture has brought about increased interest in mass production of marine fish larvae. Problems such as poor egg quality and mass mortality of fish larvae have been prevalent. The intensive incubation techniques that often result in bacterial overgrowth on fish eggs could affect the commensal relationship between the indigenous microflora and opportunistic pathogens and subsequently hamper egg development, hatching, larval health, and ongrowth. Little information about the adherent microflora on fish eggs is available, and the present study was undertaken to describe the microbial ecology during egg development and hatching of two fish species of potential commercial importance in marine aquaculture. Attachment and development of the bacterial flora on cod (Gadus morhua L.) eggs from fertilization until hatching was studied by scanning electron microscopy. The adherent microflora on cod (G. morhua L.) and halibut (Hippoglossus hippoglossus) eggs during incubation was characterized and grouped by cluster analysis. Marked bacterial growth could be demonstrated 2 h after fertilization, and at hatching eggs were heavily overgrown. Members of the genera Pseudomonas, Alteromonas, Aeromonas, and Flavobacterium were found to dominate on the surface of both cod and halibut eggs. The filamentous bacterium Leucothrix mucor was found on eggs from both species. While growth of L. mucor on halibut eggs was sparse, cod eggs with a hairy appearance due to overgrowth by this bacterium close to hatching were frequently observed. Vibrio fischeri could be detected on cod eggs only, and pathogenic vibrios were not detected. Members of the genera Moraxella and Alcaligenes were found only on halibut eggs. Caulobacter and Seliberia spp. were observed attached to eggs dissected from cod ovaries under sterile conditions, indicating the presence of these bacteria in ovaries before spawning. Adherent strains did not demonstrate antibiotic resistance above a normal level. Attempts to regulate the egg microflora by incubation of gnotobiotic eggs with defined antibiotic-producing strains did not result in persistent protection against subsequent colonization by the microflora of the incubator.
Evidence for a core gut microbiota in the zebrafish
[J].
Role of gastrointestinal microbiota in fish
[J].
Comparison of the gut microbiomes of 12 bony fish and 3 shark species
[J].
A high-resolution map of the gut microbiota in Atlantic salmon(Salmo salar):a basis for comparative gut microbial research
[J].
大黄鱼肠道细菌分离培养及分子鉴定
[C]//
Live yeasts in the gut:natural occurrence,dietary introduction,and their effects on fish health and development
[J].
Intestinal microbiota in fishes:what’s known and what’s not
[J].High-throughput sequencing approaches have enabled characterizations of the community composition of numerous gut microbial communities, which in turn has enhanced interest in their diversity and functional relationships in different groups of vertebrates. Although fishes represent the greatest taxonomic and ecological diversity of vertebrates, our understanding of their gut microbiota and its functional significance has lagged well behind that of terrestrial vertebrates. In order to highlight emerging issues, we provide an overview of research on fish gut microbiotas and the biology of their hosts. We conclude that microbial community composition must be viewed within an informed context of host ecology and physiology, and that this is of particular importance with respect to research planning and sampling design. © 2014 John Wiley & Sons Ltd.
鲫鱼肠道细菌菌群初步分析
[J].从健康鲫鱼肠道分离出62 株细菌菌株,革兰氏染色分析结果表明,其中18 株为革兰氏阳性菌株,44 株为革兰氏阴性菌株。实验分析各菌株产纤维素酶和产淀粉酶的情况。筛选到26 株产淀粉酶菌株,占筛选菌株的41.94%,没有从鲫鱼肠道内筛选到产纤维素酶菌株。使用16S rDNA 基因序列检测,确定相关菌株分别属于Aeromonas、Shewanella、Pseudomonas 等。分析产酶活性较高的菌株F2 的致病性和产酶活力,确定其不是鲫鱼致病菌,其分泌性淀粉酶在pH7、温度32℃时表现出最大酶活力。
Gut microbiota in the pathogenesis of inflammatory bowel disease
[J].Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a chronic and relapsing inflammatory disorder of the intestine. Although its incidence is increasing globally, the precise etiology remains unclear and a cure for IBD has yet to be discovered. The most accepted hypothesis of IBD pathogenesis is that complex interactions between genetics, environmental factors, and the host immune system lead to aberrant immune responses and chronic intestinal inflammation. The human gut harbors a complex and abundant aggregation of microbes, collectively referred to as the gut microbiota. The gut microbiota has physiological functions associated with nutrition, the immune system, and defense of the host. Recent advances in next-generation sequencing technology have identified alteration of the composition and function of the gut microbiota, which is referred to as dysbiosis, in IBD. Clinical and experimental data suggest dysbiosis may play a pivotal role in the pathogenesis of IBD. This review is focused on the physiological function of the gut microbiota and the association between the gut microbiota and pathogenesis in IBD. In addition, we review the therapeutic options for manipulating the altered gut microbiota, such as probiotics and fecal microbiota transplantation.
Selenium and inflammatory bowel disease
[J].
Dietary vitamin C requirement and its effects on tissue antioxidant capacity of juvenile largemouth bass,Micropterus salmoides
[J].
Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish
[J].
Antibacterial abilities of intestinal bacteria in freshwater cultured fish
[J].
Search for beneficial bacterial strains for turbot (Scophthalmus maximus L.) larviculture
[J].
Oral administration of recombinant epinecidin-1 protected grouper(Epinephelus coioodes)and zcbrafish(Danio rerio)from Vibro vulnificus infection and enhanced immunerelated gene expressions
[J].
The microflora of rainbow trout intestine:a comparison of traditional and molecular identification
[J].
Oxytetracycline treatment reduces bacterial diversity of intestinal microbiota of Atlantic salmo
[J].The effect of oxytetracycline (OTC) treatment on intestinal bacterial populations in juvenile Atlantic salmon Salmo salar was evaluated. Oxytetracycline was administered by way of medicated feed to fish held in experimental tanks. Restriction fragment length polymorphism and sequencing of 16S rDNA from isolates were used to analyze the intestinal microbiota before, during, and after OTC administration. The microbiota from untreated fish was more diverse, consisting mainly of Pseudomonas, Acinetobacter, Bacillus, Flavobacterium, Psycrobacter, and Brevundimonas spp. In contrast, the microbiota of the OTC-treated group was characterized by lower diversity and consisted only of Aeromonas, clustering with A. sobria and A. salmonicida. Antibiotic-resistant isolates were identified as Aeromonas spp.; sequencing the resistance determinant showed it to be the tetE gene. Overall, OTC treatment changed the composition of the intestinal microbiota of Atlantic salmon, as evidenced by a reduction in bacterial diversity. These results support the current concern that antibiotic treatment can facilitate the proliferation of opportunistic bacteria by eradicating competing microorganisms.
The microbiome of the gastrointestinal tract of a range-shifting marine herbivorous fish
[J].
低温胁迫对暗纹东方鲀肠道微生物群落结构的影响
[J/OL].
Seasonal variation in the intestinal bacterial flora of hybrid tilapia(Oreochromis niloticus × Oreochromis aureus)cultured in earthen ponds in Saudi Arabia
[J].
Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish(Danio rerio)
[J].
Assessments of climate change impacts on the terrestrial ecosystem in Japan using the Bio-Geographical and GeoChemical(BGGC)model
[J].
Diet strongly influences the gut microbiota of surgeonfishes
[J].Intestinal tracts are among the most densely populated microbial ecosystems. Gut microbiota and their influence on the host have been well characterized in terrestrial vertebrates but much less so in fish. This is especially true for coral reef fishes, which are among the most abundant groups of vertebrates on earth. Surgeonfishes (family: Acanthuridae) are part of a large and diverse family of reef fish that display a wide range of feeding behaviours, which in turn has a strong impact on the reef ecology. Here, we studied the composition of the gut microbiota of nine surgeonfish and three nonsurgeonfish species from the Red Sea. High-throughput pyrosequencing results showed that members of the phylum Firmicutes, especially of the genus Epulopiscium, were dominant in the gut microbiota of seven surgeonfishes. Even so, there were large inter- and intraspecies differences in the diversity of surgeonfish microbiota. Replicates of the same host species shared only a small number of operational taxonomic units (OTUs), although these accounted for most of the sequences. There was a statistically significant correlation between the phylogeny of the host and their gut microbiota, but the two were not completely congruent. Notably, the gut microbiota of three nonsurgeonfish species clustered with some surgeonfish species. The microbiota of the macro- and microalgavores was distinct, while the microbiota of the others (carnivores, omnivores and detritivores) seemed to be transient and dynamic. Despite some anomalies, both host phylogeny and diet were important drivers for the intestinal microbial community structure of surgeonfishes from the Red Sea. © 2014 John Wiley & Sons Ltd.
Changes in diet and the development of microbial digestion in juvenile buffalo bream,Kyphosus cornelii
[J].
Ontogenetic development of the gastrointestinal microbiota in the marine herbivorous fish Kyphosus sydneyanus
[J].Molecular techniques were used to investigate the composition and ontogenetic development of the intestinal bacterial community in the marine herbivorous fish Kyphosus sydneyanus from the north eastern coast of New Zealand. Previous work showed that K. sydneyanus maintains an exclusively algivorous diet throughout post-settlement life and passes through an ontogenetic diet shift from a juvenile diet which is readily digestible to an adult diet high in refractory algal metabolites. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to investigate the relationship between bacterial community structure and fish size. Bacterial diversity was higher in posterior gut sections than anterior gut sections, and in larger fish than in smaller fish. Partial sequencing of bacterial 16S rDNA genes PCR amplified and cloned from intestine content samples was used to identify the phylogenetic affiliation of dominant gastrointestinal bacteria. Phylogenetic analysis of clones showed that most formed a clade within the genus Clostridium, with one clone associated with the parasitic mycoplasmas. No bacteria were specific to a particular intestinal section or size class of host, though some appeared more dominant than others and were established in smaller fishes. Clones closely related to C. lituseburense were particularly dominant in most intestine content samples. All bacteria identified in the intestinal samples were phylogenetically related to those possessing fermentative type metabolism. Short-chain fatty acids in intestinal fluid samples increased from 15.6 +/- 2.1 mM in fish <100 mm to 51.6 +/- 5.5 mM in fish >300 mm. The findings of this study support the hypothesis that the ontogenetic diet shift of K. sydneyanus is accompanied by an increase in the diversity of intestinal microbial symbionts capable of degrading refractory algal metabolites into short-chain fatty acids, which can then be assimilated by the host.
Long-term monitoring and analyses of physical factors regulating variability in coastal antarctic phytoplankton biomass,productivity and taxonomic composition over subseasonal,seasonal and interannual time scales
[J].
Middle miocene Southern Ocean cooling and Antarctic cryosphere expansion
[J].Magnesium/calcium data from Southern Ocean planktonic foraminifera demonstrate that high-latitude (approximately 55 degrees S) southwest Pacific sea surface temperatures (SSTs) cooled 6 degrees to 7 degrees C during the middle Miocene climate transition (14.2 to 13.8 million years ago). Stepwise surface cooling is paced by eccentricity forcing and precedes Antarctic cryosphere expansion by approximately 60 thousand years, suggesting the involvement of additional feedbacks during this interval of inferred low-atmospheric partial pressure of CO2 (pCO2). Comparing SSTs and global carbon cycling proxies challenges the notion that episodic pCO2 drawdown drove this major Cenozoic climate transition. SST, salinity, and ice-volume trends suggest instead that orbitally paced ocean circulation changes altered meridional heat/vapor transport, triggering ice growth and global cooling.
/
〈 |
|
〉 |
