欢迎访问《渔业研究》官方网站,今天是 2024年10月14日 星期一 分享到:

渔业研究, 2023, 45(2): 202-212 DOI: 10.14012/i.cnki.fjsc.2023.02.013

综述与其他

利用农业固体废弃物去除水环境中多环芳烃污染物和有机磷农药的研究进展

王丽娟,, 姜琳琳, 余颖, 汤水粉, 钱卓真

福建省水产研究所,福建省海洋生物增养殖与高值化利用重点实验室,福建 厦门 361013

Review of removal of polycyclic aromatic hydrocarbons and organophosphorus pesticides by low-cost agricultural solid waste in water environment

WANG Lijuan,, JIANG Linlin, YU Ying, TANG Shuifen, QIAN Zhuozhen

Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China

收稿日期: 2022-08-22  

基金资助: 福建省省属公益类科研院所基本科研专项(2020R10130013)
厦门市自然科学基金(3502Z20227428)

Received: 2022-08-22  

作者简介 About authors

王丽娟(1980―),女,助理研究员,主要从事水产品质量安全和渔业环境监测研究。E-mail:wangguoqinli@163.com

摘要

随着经济和人口的增长,环境污染特别是水环境污染日益加剧,对水生生物和人体健康皆造成了威胁。农业固体废弃物因成本低、吸附能力强、易修饰和操作简单,而成为一种有潜力的传统吸附剂替代品。本文以多环芳烃污染物(PAHs)和有机磷农药(OPs)为分析对象,就农业固体废弃物的性质、吸附机理、影响因素及其作为吸附剂对水环境中PAHs和OPs的吸附性能等方面进行综述,并对其应用进行了展望。

关键词: 农业固体废弃物; 水环境污染; 多环芳烃污染物(PAHs); 有机磷农药(OPs)

Abstract

With the development of economy and population, the environmental pollution, especially water pollution, is becoming more and more serious.This poses a threat to aquatic life and human health.Agricultural solid waste has served as a high potential alternative kind of materials for conventional sorbents because of the low cost, high adsorption capacity, easy modification and simple operation.In this paper, when agricultural solid waste was used as adsorbent, the properties of agricultural waste, adsorption mechanism, influencing factors and adsorption performance of PAHs and OPs in water environment were reviewed.The applications of agricultural wastes as adsorbents were also prospected.

Keywords: agricultural solid waste; water pollution; polycyclic aromatic hydrocarbons (PAHs); organophosphorus pesticides (OPs)

PDF (1137KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王丽娟, 姜琳琳, 余颖, 汤水粉, 钱卓真. 利用农业固体废弃物去除水环境中多环芳烃污染物和有机磷农药的研究进展[J]. 渔业研究, 2023, 45(2): 202-212 DOI:10.14012/i.cnki.fjsc.2023.02.013

WANG Lijuan, JIANG Linlin, YU Ying, TANG Shuifen, QIAN Zhuozhen. Review of removal of polycyclic aromatic hydrocarbons and organophosphorus pesticides by low-cost agricultural solid waste in water environment[J]. Journal of Fujian Fisheries, 2023, 45(2): 202-212 DOI:10.14012/i.cnki.fjsc.2023.02.013

随着人类对地球资源的开采和利用,越来越多的污染物被排放到环境中。水体环境中的污染物通过环境迁移和食物链向动物传递,从而对人体造成危害。作为水环境中污染物,多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)污染物和有机磷农药(Organophosphorus pesticides,OPs)因具有分布广和高毒等特点,而受到广泛关注。

PAHs指由两个或两个以上苯环以直线状、角状或者簇状相连的碳氢化合物[1]。PAHs来源广泛,其特点是物理化学性质稳定、难降解,且易在生物体内富集,是自然环境中持久性有机污染物的主要代表[2]。1979年,美国环保局(EPA)将16种PAHs{萘、苊烯、苊、芴、菲、蒽、荧蒽、芘、苯并[a]蒽、芘、苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、二苯并[a, h]蒽、苯并[g, h, i]苝、茚并[3-cd]芘}列为优先监测污染物[3]。其对人体健康的危害主要是致畸、致癌和致突变(三致)效应和光致毒性。

OPs通常指含C-P、C-S-P、C-O-P或C-N-P键的有机化合物[4],大部分OPs不溶于水,溶于有机溶剂,在中性和酸性条件下稳定,在碱性条件下易被水解而失效。其具有半衰期短、易降解和残留低等特点,因此其在农林业和渔业中被广泛使用,占农药总用量的50%以上。大部分OPs属于高毒性农药,可引起急性中毒[5];而对于某些OPs,若长期低剂量接触,会对机体产生致畸、 致癌、 致突变(三致)效应。

控制水环境中PAHs和OPs污染物的含量对于保护环境和维护人类健康至关重要。目前,去除水体中有机污染物的常用技术有吸附法、氧化还原法、生物降解法和膜分离法等[6],相对于其他方法,吸附法在处理低浓度污染物具有无法比拟的优势,如环保、经济和高效,然而昂贵的制造成本,使得活性炭等传统吸附剂在处理水环境中污染物的广泛应用受到限制。

我国是一个农业大国,每年会产生大量的农业固体废弃物,给生态环境造成严重压力。作为吸附材料,农业固体废弃物具有成本低等优点,对持久性有机污染物有较高的吸附能力,且易被改造成吸附能力更强的材料,即使针对低浓度污染物也具有出色的清除能力等。尽管这一领域已有不少相关研究,但是目标污染物以重金属为主,仍缺少对有机污染物的研究。本文就农业固体废弃物性质、改性、吸附机理及其在PAHs和OPs的应用情况等进行简单概述,为开发更高效的作为吸附剂的农业固体废弃物并用于清除环境中的PAHs和OPs提供了一定的研究思路。

1 农业固体废弃物吸附特性

作为农业大国,我国每年产生的农业固体废弃物达几十亿吨,大量的农业固体废弃物对土壤、空气和水体等生态环境造成了大量污染,巨大的副产物处理及其成本引起了人们的重视[7]。其实农业固体废弃物蕴藏着巨大资源,在水体环境污染物消除方面合理的资源化利用具有巨大潜力。

1.1 农业固体废弃物的种类及其来源

农业固体废弃物是指在农、林、牧、副、渔等各类生产生活中被丢弃的有机固体废物,其来源广泛[8],具体包括:农业和林业生产中,作物和林木生产所不需要、多余的植物体,如农作物的秸秆、果壳、枯枝落叶等;畜牧业和渔业生产中的动物残余体,如动物毛皮、水产品外壳等;农业加工以及深加工过程中所产生的加工类废弃物,如木屑、水产品下脚料等;人们生产生活中的固体废弃物,如甘蔗渣、枣核、饼渣、香蕉皮、咖啡废渣等;畜禽排泄物包括畜禽粪尿、畜禽垫料等。

1.2 农业固体废弃物主要成分及其吸附机理

利用农业固体废弃物和副产物制备的生物吸附剂,按组成主要分为木质素、纤维素、半纤维素及甲壳素[9]等。木质纤维素是农作物秸秆、椰子壳等植物细胞壁的主要组成部分,主要由纤维素、半纤维素及木质素组成,还包括少量脂类、蛋白质、淀粉和其他有机成分,官能团主要有羟基、羧基和硅醇等活性基团[10]。而甲壳素主要来源于节肢动物,如虾、蟹等外壳,由2-乙酰氨基-2-脱氧-β- D -葡萄糖以β-1,4-糖苷键连接而成的多糖,可以被几丁质酶降解[11]。壳聚糖由甲壳素脱乙酰基后获得,含有的官能团如羟基、氨基、甲基羧基、乙酰基、酰胺等[12]。以木质纤维素和甲壳素为主要成分的农业吸附剂通过物理化学作用,对污染物具有吸附效果,目前有机污染物在生物吸附剂上的吸附机理仍然具有争议。已有的研究表明,吸附机理主要包括分配作用、表面吸附和孔隙截留及其共同作用,其中表面吸附包括静电吸附等物理吸附,以及官能团作用的氢键、离子偶极键、配位键或π-π键等化学吸附[13-14]

1.3 影响农业固体废弃物吸附的因素

不同来源的农业固体废弃物,其成分的差别和污染物的性质对吸附效果有重要影响,农业固体废弃物的化学结构、官能团和比表面积是决定其吸附过程的主要因素。

不同农业固体废弃物的化学组成差别较大。植物残渣如木质材料椰子壳、菠萝叶、香蕉茎、甘蔗渣、咖啡渣等的纤维素含量较高(>40%)。木质素含量较高的出现在软木、椰子壳和树皮等生物质(>30%)。吸附剂的吸附性能受其极性、芳香性等因素的影响,其中木质素是有机污染物的主要储存介质,木质素含量越高,其与持久性有机污染物的亲和力越高[15]。此外,木质纤维素的灰分含量对有机污染物在这些材料上的吸附过程也起着重要作用。二氧化硅在灰分含量中的离子结构提供了吸附极性分子的能力,例如酚类。甲壳素是一种天然的黏多糖,由大量的生物产生,如螃蟹等节肢动物的外骨骼和一些真菌的细胞壁,被认为是自然界生物合成量仅次于纤维素的天然聚合物。甲壳素/壳聚糖的一个重要特征是其分子化学结构,具有高度疏水性,不溶于水和大多数有机溶剂[11];壳聚糖中高含量的极性官能团使其对PAHs吸附能力不及木质纤维素材料。

官能团在污染物的吸附中起着重要作用。如木质素、纤维素和壳聚糖中的羟基、氨基、甲基羧基、乙酰基、酰胺等官能团,可与水环境中的有机污染物形成氢键等而具有吸附作用[16-17]。尤其壳聚糖中大量的丰富官能团,为后续的改性提供条件,使其成为一种高潜力材料[12]

最后一个显著影响因素是吸附剂的表面积,而吸附材料表面形态也会对木质纤维素吸附能力有影响[18]。Islam M A等[19]采用扫描电镜表征指出,使用过的茶叶渣表面的孔隙和开孔结构是吸附喹硫磷的主要原因。

不同有机污染物极性、疏水性、芳香性、分子大小等因素也影响其在农业固体废弃物上的吸附行为[20],还有环境条件如溶液pH、共存离子、温度、溶解性有机质含量也会影响生物吸附剂对有机污染物的吸附作用[21]

1.4 农业固体废弃物的改性

大多数天然的农业固体废弃物是由多种复杂的高分子有机化合物组成的复合体,含有大量的活性官能团,如羟基、羰基、氨基、甲基等,为改性提供了条件。通过对农业固体废弃物的活化改性改善其比表面积、孔结构以及表面基团,从而提高其吸附性能[22]

活化方法包括物理方法和化学方法。物理活化包括热处理、高压处理、破碎和冷冻干燥等[23]。Valili S等[24]报道,由于有机污染物吸附材料对总有机碳含量和孔隙度的依赖,热解是一种生产高效生物吸附剂的好方法。研究表明,热处理生物吸附剂比煤制吸附剂更有利于去除有机污染物。化学活化是常见的方法,按照改性剂的种类,可分为酸/碱改性、氧化/还原改性、金属改性、有机化改性、功能材料改性等[25-33],详见表1。Zhao X等[26]用磷酸二氢铵预处理玉米秸秆,其比表面积、孔隙度和空容量都有很大的提升,且相对于原始生物质来说,对莠去津的吸附效果也得到了大大提升。化学活化方法目前主要是对其进行酸/碱处理,通过加入柠檬酸、盐酸、H3PO4等酸改性去除矿物元素,以提高吸附剂的酸性[27-28],从而提高生物吸附剂的亲水性。Li Y等[29]报道了木质素是天然植物残体的主要芳香性组分,木质素强大的吸附潜力被共存的多糖(极性组分)严重抑制,通过酸解去除糖类组分,改性植物残体的吸附能力可显著提高。

表1   农业固体废弃物的改性活化及其理化特性

Tab.1  Modification and physicochemical properties of agricultural solid waste

方法
Methods
改性剂
Modifying
agent
常用方式或成分
Common ways or components
理化特性
Physical and chemical properties
物理改性
Physical modification
高压灭菌、热处理、真空冷冻干燥、切割、研磨、破碎、蒸汽比表面积增大,吸附位点增多
化学改性
Chemical modification
H3PO4、HNO3、HCl、H2SO4比表面积和总孔容积提升,多孔结构更为显著,有利于对水中阳离子的静电吸附
KOH、NaOH、Ca(OH)2、氨水、尿素、碳酸盐、碳酸氢盐等碱式盐可使材料表面产生正电荷,有助于吸附带负电的物质[30]
氧化剂/
还原剂
H2O2、KMnO4、过硫酸盐;
NaBH4、Na2SO3、FeSO4
使羧基、羟基和羰基的含量提高,提高材料的比表面积,去除表面更多的无机灰分,提高表面积
金属Fe3O4、MgO、MnO2、MgFe2O4
MnFe2O4
易形成纳米颗粒,其比表面积大、活性高,具有未配位的原子和不饱和键,易与吸附质原子结合,产生的羟基等活性基团提供特异性吸附位。将铁作为其中的组分之一,以适当掺杂比混合后可以得到金属磁改性生物炭,材料吸附后可快速回收[31]
有机物乙二胺四乙酸、乙二胺、β-环糊精、二甲基甲酰、十六烷基三甲基溴化铵、乙二醇、甲醇等活化材料表面羧基、羰基、酯基和醚基等含氧官能团,使其与有机物间形成多种化学键合,以提升材料吸附量[32]
功能材料壳聚糖、石墨烯、氧化石墨烯、碳纳米管、锌纳米管、锌纳米晶等功能性颗粒能够改善孔隙结构和热稳定性,提高比表面积并丰富表面官能团的种类[33]

新窗口打开| 下载CSV


2 农业固体废弃物对污染物的吸附效果

尽管目前农业固体废弃物的吸附性能不及传统吸附剂如活性炭等,但其具有传统吸附剂无可比拟的优势(不同吸附剂比较见表2),如成本低、细胞的毛细管结构使其具有较高表面积(多孔性)、不溶于水、对于低浓度废水更加有效、可再生、易于改性等[34]。其作为吸附剂为农业固体废弃物的处理提供了一条新途径,在废水污染物清理中成为高潜力的吸附剂[35-37]。本文主要就其对水环境中OPs和PAHs的吸附进行总结。

表2   不同吸附剂的比较

Tab.2  Comparison of different adsorbents

吸附剂Adsorbent优点Advantage不足Shortage
活性炭
Activated carbon
具有高的比表面积和孔隙度,以及优异的吸附性能对小分子吸附性能较差、再生困难、回收率低、投资和应用成本较高
大孔树脂
Macroporous
adsorption resin
具有价格低廉、选择性高、操作便捷、可重复利用等特点实际应用中出现树脂吸附能力下降或降解问题,以及废弃树脂的环保问题
石墨烯
Graphene
独特的面吸附特性、高比表面积、良好的化学稳定性及机械稳定性高昂的制备费用、难以回收、容易产生二次污染等
黏土Clay比表面积和孔径较大、成本廉价对非极性的污染物的吸附能力较弱、需改性
农业固体废弃物
Agricultural solid waste
来源广泛、可再生、环境相容性好、实用、廉价等缺乏在实际应用中稳定性和商业化可行性的相关研究数据

新窗口打开| 下载CSV


2.1 农业固体废弃物应用于吸附水环境中PAHs

表3可以看到,目前应用于吸附PAHs的农业固体废弃物多种多样,主要包括植物残渣如竹材、松木、松针、甘蔗渣等,米糠和生活废弃物如虾蟹等外壳。研究发现,由木质纤维素为来源的生物吸附剂,相比以壳聚糖为原料的生物吸附剂,对PAHs吸附效果更好,其原因有可能是PAHs芳香性强,而木质素是天然植物残体的主要芳香性组分,从而提高吸附效率。

表3   农业固体废弃物在吸附水环境中PAHs的应用

Tab.3  Application of agricultural solid waste removal of PAHs in the water environment

来源
Materials
制备方法
Methods
被吸附物
Adsorbate
吸附能力
Sorption capacity
环境条件
Environment
芦苇秸秆
Reed straw
高温热解最大去除率为81.87%[6]水体
竹木、松木、
松针和松树皮
Bamboo wood,
pine wood,
pine needles,
and pine bark
酸水解菲、萘、
芘和苊
酸水解后吸附能力显著提高,其中菲提高6~18倍,萘和芘为6~8倍,苊为5~8倍[15]水体
芝麻秆
Sesame stalk
高温热解、
KOH
清除率可达到100%[18]水体
松树皮
Pine bark
索氏提取、
皂化、
酸水解
菲和芘通过酸水解,吸附量显著增加,提高4~17倍,但由于菲吸附竞争抑制,芘吸附量减少了16%~34%[29]水体
甘蔗渣、椰子壳和米糠
Sugarcane bagasse,
coconut shells, and
rice husk
天然原料萘、苊、
芴和芘
Kf的数量级为萘>芴>菲>芘,对PAHs的吸收能力依次为椰子壳>甘蔗渣>稻壳,符合Freundlich模型[38]水体
木屑、黑麦草根、
橙皮、竹叶和松针
Sawdust, ryegrass root,
orange peel, bamboo leaves,
and pine needles
天然原料菲、萘、苊、
芴、芘
Kd=(2 484 ± 24.24)~(5 306 ± 92.49) L/kg[39]水体
软木废料
Cork waste
天然原料13种PAHsFreundlich和Langmuir等温线都很好地拟合了吸附过程,对芘、蒽和菲的吸附亲和性最高[40]水体
甘蔗渣、绿椰子壳、
甲壳素和壳聚糖
Sugarcane bagasse,
green coconut shells,
chitin, and chitosan
天然原料萘、苊、
蒽、芘
吸附等温线符合Freundlich模型,吸附量依次为绿椰子壳>甘蔗渣>甲壳素>壳聚糖,绿椰壳的吸附性能与传统吸附剂如琥珀石吸附性能相当[41]水体
茶叶
Tea leaf powders
煮沸12种茶叶吸附量6 960 ~32 900 mL/g[42]水体
米糠
Activated rice husk
磷酸活化、
高温热解
萘、芘和菲吸附容量可以和传统吸附剂相媲美[43]水体
麻疯树籽壳
Husk ash of jatropha
curcas seed
磷酸活化、
高温热解
萘、蒽、
菲、芘
萘、蒽、芘和菲的去除率分别为97.4%、94.6%、93.1%和92.1%,服从Langmuir方程,萘、蒽、芘和菲的饱和吸附量分别为8.849、8.547、8.097、7.633 mg/g[44]水体
黄豆杆
Soybean stalk
磷酸活化、
高温热解
菲、萘和苊对菲、萘和苊的最佳去除率分别为99.89%、100%和95.64%,制备的活性炭的性能优于商业活性炭,对PAHs的去除效率依次为菲>萘>苊[45]水体
杨木纤维
Aspen wood fibers
漂洗和水解菲和芘符合Freundlich方程,漂白纤维对菲和芘吸附能力均最低;高热水解后因其芳香碳含量高、极性低而具有最高吸附能力[46]水体
小麦秸杆、玉米秸秆
和花生壳
Wheat stalks, corn stalks,
and peanut husks
高温、
氨水改性、
高温加热
凝胶颗粒
高热小麦秸秆、玉米秸秆和花生壳饱和吸附量分别为714、1 667、370 μg/g,氨水改性后分别为909、1 754、476 μg/g,玉米秸秆制备的凝胶颗粒饱和吸附量达80 μg/g[47]水体
玉米秸秆
Corn stalk
高温热解对萘的平衡吸附量大于50 mg[48]水体
木炭
Wood char
菲、萘两种化合物的最大吸附量随分子直径的减小依次为菲<萘[49]水体
荔枝树枝、小麦和
水稻秸秆
Litchi branches,
wheat straw and rice straw
高温热解荔枝树枝生物炭对菲的吸附能力要明显大于小麦秸秆和水稻秸秆制备所得的生物炭,随着热解温度的升高,生物炭对菲的吸附能力明显增强[52]水体
香蕉皮
Banana peel
磷酸活化、
高温热解
萘、芴、菲符合Freundlich模型[53]水体

新窗口打开| 下载CSV


2.1.1 天然产物的吸附能力

某些天然废弃物材料对PAHs具有优异的吸附性能,可用于去除水环境中的PAHs。Pal D[38]研究表明,一些生物吸附剂对PAHs的吸附能力依次为椰子壳>甘蔗渣>米糠,吸附结果与Freundlich模型吻合较好。在另一项研究中,Chen B等[39]使用了木屑、黑麦草根、橙皮、竹叶和松针等农业生物材料来吸附菲、萘、苊、芴、芘等PAHs,对PAHs的吸附量大小顺序为>>>>。Olivella M A等[40]使用软木废料(原始形式)去除13种PAHs,表明这种材料对PAHs表现出一定的吸附能力。Crisafully R等[41]采用天然原料甘蔗渣、椰壳、甲壳素、壳聚糖等低成本吸附剂对石油化工废水中的PAHs进行了脱除研究,对PAHs的吸附量依次为椰壳>甘蔗渣>甲壳素>壳聚糖, 绿椰壳对PAHs的吸附性能与某些传统吸附剂如离子交换树脂相当。而Lin D H等[42]发现,原始茶叶和煮沸过的茶叶对菲都呈现相对较高的吸附亲和力,提出脂肪性组分而不是芳香性组分调控茶叶粉末对菲的吸附。

2.1.2 生物材料的改性

脂肪碳和芳香碳是PAHs主要的吸附结构,生物吸附剂的结构特性(例如极性和芳香性)显著影响其吸附性能。通过对废弃物的修饰改性,可提高其吸附效率[43-44]

1)经过高温处理,材料的表面积增大,可以提高对PAHs的吸附效果。Kong H等[18]以芝麻秆为原料,在菲浓度为312.5 mg/L、炭化温度为700℃时,其去除率接近100%。Kong H等[45]还研究了不同温度下大豆秸秆碳化所得的活性炭对水溶液中的萘、菲、苊等的吸附效果,吸附能力随碳化温度的升高而增强,700℃下碳化得到的活性炭对萘、菲、苊的去除率分别达到99.89%、100%、95.64%。

2)通过对原始植物残体进行酸解处理脱糖,去除大部分半纤维素和部分无定型纤维素[46],产生的基质具有更多的芳香基团、较低的极性,且比未处理的木材纤维的孔隙率更高,改性植物残体的吸附性能大大增强。Xi Z M等[15]使用植物废弃物如竹木、松木、松针和松树皮作为生物吸附剂去除菲、萘、芘和苊,此研究比较了不同的原料和修饰方法对PAHs的去除效果,试验证实经酸水解脱糖后的材料具有更高的吸附容量;例如对于原料竹子,最大吸附量为1 553.88×10-3 mg/g,而其脱糖后提高了10倍。Li Y[29]等证实脱糖改性植物样品的吸附能力皆比相应原始样品显著提高。

3)近年来不断有新型复合改性材料应用于水环境中PAHs的吸附。孙璇[47]采用3种作物原料(小麦秸秆、玉米秸秆和花生壳)制备的生物质炭、改性产物及用生物质炭制备的凝胶颗粒,比较其对芘的吸附特性。经氨水改性的生物炭平衡吸附量更高,采用凝胶颗粒制备的填充柱对溶液芘具有较好的动态吸附能力。

2.1.3 吸附机理的探讨

大部分研究认为,植物等天然有机质对PAHs的吸附机理主要以分配作用为主,疏水效应、孔隙填充效应以及π-π共轭反应共同起作用[48-53]。张默等[48]利用颗粒内扩散模型表征玉米生物质炭对萘的吸附均为多重线性,表明孔隙填充对萘的吸附发挥重要作用。吴晴雯等[6]采用在500℃热解温度下自制的芦苇秸秆生物炭为吸附剂,对水中菲进行吸附,结果表明吸附机制包括表面吸附作用和分配作用,污染物分子体积和相对极性是影响总体吸附的主要因素;含氧、含氢官能团及π-π相互作用对生物炭吸附有机污染物有重要贡献。Nguyen T H等[49]研究了萘、菲等污染物在不同温度制备的木屑生物炭上的吸附行为,发现木炭吸附有机污染物的过程由孔填充作用主导,有机污染物的最大吸附量随有机化合物分子尺寸减小而增大。Zhu D等[50]研究了木炭吸附PAHs(例如:萘、菲、芘),发现排除生物炭表面含氧官能团的影响,不同有机化合物在生物炭上的吸附能力顺序与它们在石墨上的一致,表明木炭上类似石墨片层的结构可与有机化合物的苯环结构形成π-π作用。Zhu D Q等[51]对木质生物质炭加氢和再氧化处理,结果表明萘、菲、芘等有机污染物的吸附并没有发生变化,否定了形成氢键的吸附过程,推测高度芳香性生物质炭与苯环有机化合物之间通过π-π电子供受体作用力实现化学吸附过程。张晗等[52]以不同来源的生物质(荔枝树枝、小麦和水稻秸秆)为原料制备生物炭,考察其对菲的吸附性能,结果表明生物炭吸附菲的可能机制有疏水效应、孔隙填充效应以及π-π共轭反应等。

2.2 农业固体废弃物应用于吸附水环境中OPs

利用农业废物进行水环境中农药的清除已有一些报道,然而对于OPs吸附的报道比较有限(表4)。Zolgharnein J等[54]采用甘蔗渣进行水环境中的马拉硫磷的清除,吸附容量可达到2.08×10-3 mg/g。Ahmad T等[55]采用大米的谷壳和麸皮分别进行水环境中甲基对硫磷的清除,其清除率分别为(101.94±2.33)(113.59±2.62) mg/g。Akhtar M等[56]比较了稻糠、甘蔗渣、豆荚、稻壳生物炭对甲基对硫磷的吸附效果,结果表明稻糠生物炭的吸附效果最好。吸附容量和稳定性可通过对吸附剂的物理化学改性而增强,通过热解和酸处理等技术改性有利于提高生物吸附剂对OPs的吸附能力。增温对吸附材料的比表面积和孔容增加具有明显的提升作用,这种提升作用主要是构成废弃物的纤维素、半纤维和木质素在升温过程中逐渐分解所形成的孔隙结构。孙蕾等[57]以乐果为目标污染物、制糖工业产生的废弃物甘蔗渣为炭吸附剂原材料,系统研究裂解温度、蔗渣炭用量、溶液温度和乐果浓度等因素对蔗渣炭吸附去除乐果性能影响,蔗渣炭对乐果的理论最大吸附能力为48.17 mg/g。Mohammad S G等[58]采用杏核制备有机农药固定化活性炭,用H3PO4和500℃高温、HCl对杏核进行改性,制备出去除乙草磷的活性炭,其单层最大吸附量为20.04 mg/g。Islam M A等[59]采用茶叶为原料制备了生物炭,研究了其对8种OPs的吸附效果,最大吸附率可达96.3%以上,表明茶叶有作为廉价吸附剂从水体中去除OPs的潜力。Abdeen Z等[60]采用虾壳制备的壳聚糖清除水环境中的灭线磷,对吸附剂剂量、农药初始浓度和接触时间等参数进行了考察,结果表明壳聚糖作为一种低成本生物吸附剂,可用于去除水溶液中OPs。

表4   农业固体废弃物在吸附水环境中OPs的应用

Tab.4  Application of agricultural solid waste removal of OPs in the water environment

来源
Materials
吸附剂形态
Methods
被吸附物
Adsorbate
吸附能力
Sorption capacity
环境条件
Environment
玉米Corn磷酸热解、水热碳化6种OPs吸附率可达90%以上[27]水体
甘蔗渣
Sugarcane bagasse
天然原料马拉硫磷吸附容量可达到2.08×10-3 mg/g[54]水体
大米谷壳和麸皮
Husk and bran of rice
天然原料甲基对硫磷清除率分别为(101.94±2.33)、(113.59±2.62)mg/g[55]水体
稻糠、甘蔗渣、豆荚、稻壳
Rice bran, sugarcane bagasse,
moringa oleifera pods
and rice husk
热解和酸处理甲基对硫磷稻糠生物炭的吸附效果最好[56]水体
甘蔗渣
Sugarcane bagasse
高温热解乐果蔗渣炭对乐果的理论最大吸附能力为48.17 mg/g[57]水体
杏核Apricot stone高温、酸水解乙草磷单层最大吸附量为20.04 mg/g[58]水体
茶叶Tea leaves高温热解8种OPs最大吸附率可达96.3%以上[59]水体
虾壳
Shells of the shrimp
酸碱法制备壳聚糖灭线磷清除率为89.234%[60]水体
棉花秸秆
Cotton stalks
氨基改性毒死蜱去除率达到90%以上[61]水体
甘蔗渣
Sugarcane bagasse
ZnCl2活化、高温碳化、
壳聚糖交联聚合
敌敌畏最大吸附量为16.06 mg/g[62]水体
辣木种子
Moringa oleifera seed
机械研磨到纳米级别毒死蜱清除率达到81%[63]水体

新窗口打开| 下载CSV


已有对农业固体废弃物进行化学改性并制备获得的复合材料应用于OPs的相关报道。杨婕[61]采用棉花秸秆为原料,通过氨基改性制备改性纳米纤维素,毒死蜱去除率达到90%以上;经过氨基改性的纳米纤维素表面富含氨基和羟基官能团,通过氢键、静电吸引和氨基活性位点吸引更多的毒死蜱分子。所凤阅[27]采用玉米来源生物质进行水热碳化法制备的活性炭中,碳化纤维素氧化石墨烯复合物的吸附性能最好,在最佳条件下对6种OPs的吸附率均可达90%以上,且多次重复利用后,材料的吸附性能仍旧较好。王秋华[62]采用农业固体废弃物甘蔗渣为原材料制备出壳聚糖-甘蔗渣复合活性炭,对水溶液中的敌敌畏进行吸附,结果表明复合活性炭更具稳定性和长效性,单位比表面积去除率大于甘蔗渣活性炭,其机理主要分为3个方面:有机农药的水解过程,复合活性炭对敌敌畏的去除(包括活性炭本身以及活性炭和壳聚糖的共同作用)以及复合活性炭上的官能团对敌敌畏的去除。目前以农业固体废弃物为原料制备新型吸附剂也已有报道,如Hala H M等[63]采用辣木种子废弃物为原料制备了一种新型纳米级吸附剂,并首次应用于毒死蜱污染废水的处理,结果表明此种纳米级废弃物对毒死蜱的最大吸附量比常规固体废弃物提高了2.75倍,并优于大多数已有报道的绿色吸附剂;在pH为7、接触时间为30 min的条件下,其清除率达到81%,吸附机理主要是氢键、疏水、静电和π-π相互作用。

3 总结和展望

采用农业固体废弃物作为吸附剂处理废水,目前其对重金属吸附的报道较多,而对于有机污染物吸附的研究任重而道远。尽管已有报道农业固体废弃物的吸附效率可以和商业吸附剂相媲美,但是其吸附性能还有一定差距。实现农业固体废弃物高容量吸附,可通过对原材料进行修饰,以提高吸附性能,并研发新型高性能吸附剂,如近年出现的几种废弃物(含有不同官能团和不同化学性质)联合使用制备复合材料,实现高效吸附;多形态生物吸附剂如流动柱吸附剂,可持续再生和循环使用,一方面可减少废水处理的成本,另一方面可进一步优化性能,满足不同需求。总之,采用农业固体废弃物作为生物吸附剂来处理工业和城市废水是目前较有吸引力的解决途径之一,通过使用一种废物(固体)处理另一种废物(水),从而减少污染,尽管目前实验室理论研究较多而实际应用较少,但利用农业固体废弃物开发高效的生物吸附剂是一种有前途、低成本、绿色的技术。

参考文献

包贞, 潘志彦, 杨晔, .

环境中多环芳烃的分布及降解

[J]. 浙江工业大学学报, 2003, 31 (5):528-533,544.

[本文引用: 1]

王丽娟.

水产品中多环芳烃的检测方法及污染特征研究进展

[J]. 渔业研究, 2016, 38 (4):343-350.

[本文引用: 1]

多环芳烃作为持久性有机污染物,其来源广泛,易在生物体内富集而难以降解。水产品因能够为人体提供大量的蛋白质、脂肪和矿物质等营养物质而备受青睐,但由于受到水域环境污染的影响,其体内含有不同程度的多环芳烃污染物(PAHs)。而水生生物体内的PAHs通过食物链传递,在人体内蓄积,进而威胁人体健康。本文就PAHs的来源、分布迁移、在水产品中检测方法及污染特征等方面进行综述。

杨若明. 环境中有毒有害化学物质的污染与监测[M]. 北京: 中央民族大学出版社, 2001:21-178.

[本文引用: 1]

陈进. 有机磷农药分析方法的研究[D]. 金华: 浙江师范大学, 2010.

[本文引用: 1]

Vose S C, Holland N T, Eskenazi B, et al.

Lysophosphatidylcholine hydrolases of human erythrocytes, lymphocytes, and brain: sensitive targets of conserved specificity for organophosphorus delayed neurotoxicants

[J]. Toxicology and Applied Pharmacology, 2007, 224 (1);98-104.

PMID      [本文引用: 1]

Brain neuropathy target esterase (NTE), associated with organophosphorus (OP)-induced delayed neuropathy, has the same OP inhibitor sensitivity and specificity profiles assayed in the classical way (paraoxon-resistant, mipafox-sensitive hydrolysis of phenyl valerate) or with lysophosphatidylcholine (LysoPC) as the substrate. Extending our earlier observation with mice, we now examine human erythrocyte, lymphocyte, and brain LysoPC hydrolases as possible sensitive targets for OP delayed neurotoxicants and insecticides. Inhibitor profiling of human erythrocytes and lymphocytes gave the surprising result of essentially the same pattern as with brain. Human erythrocyte LysoPC hydrolases are highly sensitive to OP delayed neurotoxicants, with in vitro IC50 values of 0.13-85 nM for longer alkyl analogs, and poorly sensitive to the current OP insecticides. In agricultural workers, erythrocyte LysoPC hydrolyzing activities are similar for newborn children and their mothers and do not vary with paraoxonase status but have high intersample variation that limits their use as a biomarker. Mouse erythrocyte LysoPC hydrolase activity is also of low sensitivity in vitro and in vivo to the OP insecticides whereas the delayed neurotoxicant ethyl n-octylphosphonyl fluoride inhibits activity in vivo at 1-3 mg/kg. Overall, inhibition of blood LysoPC hydrolases is as good as inhibition of brain NTE as a predictor of OP inducers of delayed neuropathy. NTE and lysophospholipases (LysoPLAs) both hydrolyze LysoPC, yet they are in distinct enzyme families with no sequence homology and very different catalytic sites. The relative contributions of NTE and LysoPLAs to LysoPC hydrolysis and clearance from erythrocytes, lymphocytes, and brain remain to be defined.

吴晴雯, 孟梁, 张志豪, .

芦苇秸秆生物炭对水中菲和 1,1-二氯乙烯的吸附特性

[J]. 环境科学, 2016, 37 (2):680-688.

[本文引用: 3]

王维东.

农业废弃物可持续发展现状及对策分析

[J]. 现代农村科技, 2021 (4):103-104.

[本文引用: 1]

郑露露, 闫晓明, 陶敬, .

农业固体废弃物循环利用现状及循环利用方式

[J]. 浙江农业科学, 2016, 57 (7):1112-1114.

[本文引用: 1]

Tran V S, Ngo H H, Guo W S, et al.

Typical low cost biosorbents for adsorptive removal of specific organic pollutants from water

[J]. Bioresource Technology, 2015, 182:353-363.

DOI      PMID      [本文引用: 1]

Specific organic pollutants (SOPs) such as phenolic compounds, PAHs, organic pesticides, and organic herbicides cause health and environmental problems due to their excessive toxic properties and poor biodegradability. Low-cost biosorbents are considered as a promising alternative for conventional adsorbents to remove SOPs from water. These materials have several advantages such as high sorption capacities, good modifiability and recoverability, insensitivity to toxic substances, simple operation in the treatment processes. However, previous reports on various types of biosorbents for removing SOPs are still moderately fragmented. Hence, this paper provides a comprehensive review on using typical low-cost biosorbents obtained from lignocellulose and chitin/chitosan for SOPs adsorption. Especially, their characteristics, biosorption mechanism together with utilization for eliminating SOPs are presented and discussed. The paper also gives a critical view regarding future applications of low-cost biosorbents in SOPs-contaminated water treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

Krishnani K K, Meng X, Christodoulatos C, et al.

Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk

[J]. Journal of Hazardous Materials, 2008, 153:1222-1234.

PMID      [本文引用: 1]

A biomatrix was prepared from rice husk, a lignocellulosic waste from agro-industry, for the removal of several heavy metals as a function of pH and metal concentrations in single and mixed solutions. The biomatrix was characterized using scanning electron microscope and Fourier transform infrared spectroscopy, which indicated the presence of several functional groups for binding metal ions. Different experimental approaches were applied to show mechanistic aspects, especially the role of calcium and magnesium present in the biomatrix in ion exchange mechanism. The ultimate maximum adsorption capacity obtained from the Langmuir isotherm increases in the order (mmol/g): Ni (0.094), Zn (0.124), Cd (0.149), Mn (0.151), Co (0.162), Cu (0.172), Hg (0.18) and Pb (0.28). The sorption of Cr(III) onto biomatrix at pH 2 was 1.0 mmol/g. Speciation of chromium, cadmium and mercury loaded on the biomatrix was determined by X-ray photoelectron spectroscopy. The biomatrix has adsorption capacity comparable or greater to other reported sorbents.

Kumar M N V R.

A review of chitin and chitosan applications

[J]. Reactive Functional Polymers, 2000, 46:1-27.

DOI      URL     [本文引用: 2]

Bhatnagar A, Sillanpää M.

Applications of chitin-and chitosan-derivatives for the detoxification of water and wastewater - a short review

[J]. Advances in Colloid and Interface Science, 2009, 152:26-38.

DOI      PMID      [本文引用: 2]

Chitin and chitosan-derivatives have gained wide attention as effective biosorbents due to low cost and high contents of amino and hydroxyl functional groups which show significant adsorption potential for the removal of various aquatic pollutants. In this review, an extensive list of chitin- and chitosan-derivatives from vast literature has been compiled and their adsorption capacities for various aquatic pollutants as available in the literature are presented. This paper will give an overview of the principal results obtained during the treatment of water and wastewater utilizing chitin and chitosan-derivatives for the removal of: (a) metal cations and metal anions; (b) radionuclides; (c) different classes of dyes; (d) phenol and substituted phenols; (e) different anions and other miscellaneous pollutants. The review provides a summary of recent information obtained using batch studies and deals with the various adsorption mechanisms involved. It is evident from the literature survey that chitin- and chitosan-derivatives have shown good potential for the removal of various aquatic pollutants. However, still there is a need to find out the practical utility of such developed adsorbents on commercial scale.

李晓娜, 宋洋, 贾明云, .

生物质炭对有机污染物的吸附及机理研究进展

[J]. 土壤学报, 2017, 54 (6): 1313-1325.

[本文引用: 1]

Al-Zaben M I, Mekhamer W K.

Removal of 4-chloro-2-methyl phenoxy acetic acid pesticide using coffee wastes from aqueous solution

[J]. Arabian Journal of Chemistry, 2017, 10:1523-1529.

DOI      [本文引用: 1]

The objective of this study is to investigate the use of coffee waste (CW) to remove the 4-chloro-2-methyl phenoxy acetic acid (MCPA) from aqueous solutions. To prepare CW, it was first washed and boiled to remove color and impurities then it was air dried at room temperature for 48 h. Afterward the particle size distribution and zeta potential of the CW ground were determined. The porous texture of coffee was proved by scanning and transition electron microscopy. Batch adsorption tests were performed at 298 K. The effects of contact time, MCPA concentration, and pH were investigated. It was observed that the adsorption of MCPA by using CW is independent of the solution pH level. The Langmuir isotherm provided the best correlation for MCPA adsorption onto CW, showing that the adsorption was favorable. The Langmuir adsorption capacity was found to be 0.34 g/g. The second-order model provided the best description of MCPA adsorption onto CW when compared with the first order model. Infrared spectral studies revealed that acidic groups carboxyl and hydroxyl, are predominant contributors to MPCA adsorption by coffee. (C) 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.

Xi Z M, Chen B L.

Removal of polycyclic aromatic hydrocarbons from aqueous solution by raw and modified plant residue materials as biosorbents

[J]. 环境科学学报(英文版), 2014, 26(4):737-748.

DOI      PMID      [本文引用: 3]

Removal of polycyclic aromatic hydrocarbons (PAHs), e.g., naphthalene, acenaphthene, phenanthrene and pyrene, from aqueous solution by raw and modified plant residues was investigated to develop low cost biosorbents for organic pollutant abatement. Bamboo wood, pine wood, pine needles and pine bark were selected as plant residues, and acid hydrolysis was used as an easily modification method. The raw and modified biosorbents were characterized by elemental analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. The sorption isotherms of PAHs to raw biosorbents were apparently linear, and were dominated by a partitioning process. In comparison, the isotherms of the hydrolyzed biosorbents displayed nonlinearity, which was controlled by partitioning and the specific interaction mechanism. The sorption kinetic curves of PAHs to the raw and modified plant residues fit well with the pseudo second-order kinetics model. The sorption rates were faster for the raw biosorbents than the corresponding hydrolyzed biosorbents, which was attributed to the latter having more condensed domains (i.e., exposed aromatic core). By the consumption of the amorphous cellulose component under acid hydrolysis, the sorption capability of the hydrolyzed biosorbents was notably enhanced, i.e., 6-18 fold for phenanthrene, 6-8 fold for naphthalene and pyrene and 5-8 fold for acenaphthene. The sorption coefficients (Kd) were negatively correlated with the polarity index [(O+N)/C], and positively correlated with the aromaticity of the biosorbents. For a given biosorbent, a positive linear correlation between logKoc and logKow for different PAHs was observed. Interestingly, the linear plots of logKoc-logKow were parallel for different biosorbents. These observations suggest that the raw and modified plant residues have great potential as biosorbents to remove PAHs from wastewater. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

韩林. 生物炭和改性生物炭对有机污染物的吸附-转化性能及作用机理[D]. 杭州: 浙江大学, 2017.

[本文引用: 1]

Sud D, Mahajan G, Kaur M P.

Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions-a review

[J]. Bioresource Technology, 2008, 99 (14):6017-6027.

DOI      URL     [本文引用: 1]

Kong H, He J, Wu H, et al.

Phenanthrene removal from aqueous solution on sesame stalk-based carbon

[J]. Clean-Soil Air Water, 2012, 40:752-759.

DOI      URL     [本文引用: 3]

Islam M A, Sakkas V, Albanis T A.

Application of statistical design of experiment with desirability function for the removal of organophosphorus pesticide from aqueous solution by low-cost material

[J]. Journal of Hazardous Materials, 2009, 170:230-238.

DOI      PMID      [本文引用: 1]

This paper deals with the multiple response optimization for the removal of organophosphorus pesticide quinalphos [QP: O,O-diethyl O-2-quinoxalinyl phosphorothioate] from the aqueous solution onto low-cost material and tried to overcome the drawbacks of univariate optimization. Used tea leaves were used as low-cost adsorbent and batch equilibration method was followed for this study. A Box-Behnken design was used to develop response model and desirability function was then used for simultaneous optimization of all affecting parameters in order to achieve the highest removal% of quinalphos. The optimum conditions of factors predicted for quinalphos removal% were found to be: pH 8.83, concentration 7 mg L(-1) and dose 0.40 g. Under these conditions, maximum removal% of quinalphos was obtained 96.31%. Considering the above optimum conditions, the adsorption isotherms were developed and provided adsorption capacity of 196.07 microg g(-1) by using Langmuir equation, indicating that used tea leaves may be applied as a low-cost material for pesticides removal from aqueous matrices.

姜媛. 不同生物质制备的高温生物炭对水中芳香性有机污染物的吸附机制及规律[D]. 杭州: 浙江大学, 2017.

[本文引用: 1]

Parshetti G K, Chowdhury S, Balasubramanian R.

Hydrothermal conversion of urban food waste to chars for removal of textile dyes from contaminated waters

[J]. Bioresource Technology, 2014, 161:310-319.

DOI      PMID      [本文引用: 1]

Hydrothermal carbonization of urban food waste was carried out to prepare hydrochars for removal of Acridine Orange and Rhodamine 6G dyes from contaminated water. The chemical composition and microstructure properties of the synthesized hydrochars were investigated in details. Batch adsorption experiments revealed that hydrochars with lower degree of carbonization were more efficient in adsorption of dyes. Operational parameters such as pH and temperature had a strong influence on the dye uptake process. The adsorption equilibrium data showed excellent fit to the Langmuir isotherm. The pseudo-second-order kinetic model provided a better correlation for the experimental kinetic data in comparison to the pseudo-first-order kinetic model. Thermodynamic investigations suggested that dye adsorption onto hydrochars was spontaneous and endothermic. The mechanism of dye removal appears to be associated with physisorption. An artificial neural network (ANN)-based modelling was further carried out to predict the dye adsorption capacity of the hydrochars. Copyright © 2014 Elsevier Ltd. All rights reserved.

Nataša K, Alexandra S M, Teodorovi A, et al.

Bio-waste valorisation: agricultural wastes as biosorbents for removal of (in)organic pollutants in wastewater treatment

[J]. Chemical Engineering Journal Advances, 2022, 9:100239.

DOI      URL     [本文引用: 1]

奚泽民. 植物残体对水中多环芳烃的生物吸附性能及构效关系[D]. 杭州: 浙江大学, 2013.

[本文引用: 1]

Valili S, Siavalas G, Karapanagioti H K, et al.

Phenanthrene removal from aqueous solutions using well-characterized,raw,chemically treated,and charred malt spent rootlets,a food industry by-product

[J]. Journal of Environmental Management, 2013, 128:252-258.

DOI      URL     [本文引用: 1]

王靖宜, 王丽, 张文龙, .

生物炭基复合材料制备及其对水体特征污染物的吸附性能

[J]. 化工进展, 2019, 38 (8):3838-3851.

[本文引用: 1]

Zhao X, Ouyang W, Hao F, et al.

Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine

[J]. Bioresoure Technology, 2013, 147:338-344.

DOI      URL     [本文引用: 2]

所凤阅. 玉米秸秆生物炭的研制及其对水体中农药的吸附机制研究[D]. 沈阳: 沈阳农业大学, 2018.

[本文引用: 4]

El Bakouri H, Usero J, Morillo J, et al.

Adsorptive features of acid-treated olive stones for drin pesticides: equilibrium,kinetic and thermodynamic modeling studies

[J]. Bioresoure Technology, 2009, 100:4147-4155.

DOI      URL     [本文引用: 2]

Li Y, Chen B, Zhu L.

Enhanced sorption of polycyclic aromatic hydrocarbons from aqueous solution by modified pine bark

[J]. Bioresoure Technology, 2010, 101:7307-7313.

DOI      URL     [本文引用: 4]

胡锋平, 罗文栋, 彭小明, .

改性生物质炭去除水中污染物的研究进展

[J]. 工业水处理, 2019, 39 (4): 1-4.

DOI      [本文引用: 2]

简述了生物质炭的改性方法(蒸汽活化、酸改性、碱改性、浸渍法),并对改性过程机理进行分析,总结了改性生物质炭对水中重金属、阴离子、有机污染物的去除效果。在此基础上,对未来的研究方向进行展望,认为生物质炭的再生处理是研究重点之一,结合其他功能材料形成新的复合水处理材料也是今后的研究重点。

Cederlund H, Borjesson E, Lundberg D, et al.

Adsorption of pesticides with different chemical properties to a wood biochar treated with heat and iron

[J]. Water Air & Soil Pollution, 2016, 227:1-12.

[本文引用: 2]

张汝壮. 功能化改性木屑材料的制备及其吸附/光催化性能研究[D]. 上海: 华东理工大学, 2015.

[本文引用: 2]

许朝贵. 生物炭功能材料的制备及对有机污染物的去除研究[D]. 济南: 齐鲁工业大学, 2020.

[本文引用: 2]

Kyzas G Z, Kostoglou M.

Green adsorbents for waste waters: a critical review

[J]. Materials, 2014, 7 (1):333-364.

DOI      URL     [本文引用: 1]

Rio S, Martin P.

Removal of metal ions from aqueous solution by adsorption onto low-cost biosorbent

[J]. Environmental Technology, 2012, 33 (19):2211-2215.

DOI      URL     [本文引用: 1]

Abdel-Halim E S, Al-Deyab S S.

Chemically modified cellulosic adsorbent for divalent cations removal from aqueous solutions

[J]. Carbohydrate Polymers, 2012, 87 (2):1863-1868.

DOI      URL     [本文引用: 1]

Nanseu-Njiki C P, Dedzo G K, Ngameni E.

Study of the removal of paraquat from aqueous solution by biosorption onto ayous triplochiton schleroxylon sawdust

[J]. Journal of Hazardous Materials, 2010, 179:63-71.

DOI      PMID      [本文引用: 1]

This study concerns the batch biosorption of paraquat on Ayous (Triplochiton schleroxylon) sawdust; the study centers on the evolution of biosorption parameters during the process. It appears that paraquat forms a monolayer on the sawdust surface as evidenced by the good correlation between the experimental data and the Langmuir model. The biosorption which is rather fast (the equilibrium was reached after ten minutes) follows a pseudo-second-order kinetic model and does not obey to the intra-particle diffusion model. According to the mathematical kinetic modeling, pore and surface mass transfer well describe the phenomenon. NaCl reduces the adsorption capacity of the material but has no significant effect on the kinetics. Alkaline solutions enhance the accumulation of the pollutant, the reverse being observed for acidic media. According to the thermodynamic data, this biosorption is a spontaneous and exothermic process. From these results we concluded that the adsorption of the pollutant is mainly due to cation exchange as indicated by the adsorption energy determined by the Dubinin-Radushkevich model (E=12.0736 kJ mol(-1)); some other interactions resulting from the affinity through organophilic interactions between paraquat and sawdust have also been pointed out. Desorption experiments conducted in HCl and HNO(3) solutions confirmed the proposed mechanism.2010 Elsevier B.V. All rights reserved.

Pal D.

Adsorption of polycyclic aromatic hydrocarbons using agricultural wastes-effect of lignin content

[C]. International Conference on Chemical,Ecology and Environmental Sciences (ICEES’2012), 2012, 14:4-57.

[本文引用: 2]

Chen B, Yuan M, Liu H.

Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent

[J]. Journal of Hazardous Materials, 2011, 188:436-442.

DOI      PMID      [本文引用: 2]

To elucidate biosorption mechanism and removal efficiency of plant residues as a biosorbent to abate polycyclic aromatic hydrocarbons (PAHs) in wastewater, sorption of PAHs onto wood chips (WC), ryegrass roots (RR), orange peels (OP), bamboo leaves (BL), and pine needles (PN) were investigated. The structural characterization of the biosorbents was analyzed by elemental composition, BET-N(2) surface area, and Fourier transform infrared spectroscopy. PAHs sorption to the selected biosorbents were compared and correlated with their structures. Biosorption isotherms fit well with Freundlich equation and the mechanism was dominated by partition process. The magnitude of phenanthrene partition coefficients (K(d)) followed the order of PN > BL > OP > RR > WC, ranged from 2484 ± 24.24 to 5306 ± 92.49 L/kg. Except the WC sample, the K(d) values were negatively correlated with sugar content, polar index [(N+O)/C] of the biosorbents, while the aromatic component exhibited positive effects. For a given biosorbent of bamboo leaves, the carbon-normalized partition coefficients (K(oc)) were linearly correlated with octanol-water partition coefficients (K(ow)) of PAHs, i.e., logK(oc) = 1.16 log K(ow)-1.21. The structure-effect relationship provides a reference to select and modify plant residues as a biosorbent with high efficiency to tackle organic pollutants.Copyright © 2011 Elsevier B.V. All rights reserved.

Olivella M A, Jove P, Oliveras A.

The use of cork waste as a biosorbent for persistent organic pollutants-study of adsorption/desorption of polycyclic aromatic hydrocarbons

[J]. Journal of Environmental Science and Health Part A, 2011, 46:824-832.

DOI      PMID      [本文引用: 2]

The aim of this study is to determine the sorption-desorption behavior of a mixture of thirteen aqueous PAHs on cork waste at a particle of size 0.25-0.42 mm obtained from the remains of cork strips. The final purpose is to use this natural adsorbent as an alternative to activated carbon in an innovative approach for the removal of this class of toxic compounds, and significantly reduce the regeneration costs of the process. The chemical composition of the selected cork revealed that suberin (38.5 %) and lignin (31.6 %) were the main structural components of the cell wall. The high efficiency of cork as a biosorbent of PAHs is shown by the fact that just over 80 % of adsorption occurred during the first two minutes of contact time. Both Freundlich's and Langmuir's isotherms gave good fits to the sorption process. The highest adsorption affinities were exhibited for pyrene, anthracene, and phenanthrene. Desorption studies indicate a high degree of irreversibility for all PAHs, and especially so in the case of high molecular PAHs. The correlation with K(F) and low molecular weight PAHs was the most significant. The quantity of cork required to reduce water pollution was estimated to be between 3 and 15 times less than the quantities required in the case of other materials (i.e. aspen wood and leonardite). This study demonstrates for the first time that cork is a potential biosorbent for PAHs and may have relevance in the future treatment of PAH-contaminated waters.

Crisafully R, Milhome M A L, Cavalcante R M, et al.

Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin

[J]. Bioresoure Technology, 2008, 99: 4515-4519.

DOI      URL     [本文引用: 2]

Lin D H, Pan B, Zhu L Z, et al.

Characterization and phenanthrene sorption of tea leaf powders

[J]. Journal of Agricultural and Food Chemistry, 2007, 55:5718-5724.

PMID      [本文引用: 2]

The sorption of hydrophobic organic compounds by natural organic matter is mainly regulated by its aromatic and aliphatic fractions, but it is not clear which fraction is more dominant. In this study, six types of Chinese tea leaves (three varieties of tender and three corresponding mature leaves) and their respective brewed ones were analyzed by elemental analysis, 13C NMR, and Fourier transform infrared attenuated total reflectance. Their sorption of phenanthrene was examined using a batch equilibration technique. The aromatic carbon content of tea leaves reduced while the aliphatic carbon content increased with increasing maturity and brewing. Sorption isotherms by all of the 12 tea sorbents were practically linear, showing a partition type sorption. The phenanthrene KOC (organic carbon-normalized sorption capacity) of the 12 sorbents ranged from 6960 to 32,900 mL/g, which increased with increasing aliphatic carbons and decreasing aromatic carbons in the tea leaves. The dissolved organic matter was released into solution from the sorbents during the sorption process, which could bind phenanthrene in the solution, and thereafter leading to underestimation of sorption capacity of the sorbents, but this did not change the correlation trends between KOC and functional carbon group content. Aliphatic fractions rather than aromatic moieties regulated the phenanthrene sorption of the tea leaf powders used in this study.

Yakout S M, Daifullah A A M.

Removal of selected polycyclic aromatic hydrocarbons from aqueous solution onto various adsorbent materials

[J]. Desalination and Water Treatment, 2013, 51:6711-6718.

DOI      URL     [本文引用: 2]

史兵方, 仝海娟, 左卫元, .

麻疯树籽壳生物质炭的制备及其吸附水中PAHs性能研究

[J]. 中国环境科学, 2016, 36 (4):1059-1066.

[本文引用: 2]

Kong H, He J, Gao Y, et al.

Removal of polycyclic aromatic hydrocarbons from aqueous solution on soybean stalk-based carbon

[J]. Journal of Environmental Quality, 2011, 40 (6):1737-1744.

DOI      PMID      [本文引用: 2]

Soybean [ (L.) Merr.] stalk-based carbons were prepared by phosphoric acid activation at different carbonization temperatures. Characteristics of the prepared carbon, including specific surface area, iodine number, and amount of methylene blue sorption, were determined. Experiments on phenanthrene, naphthalene, and acenaphthene, as representatives of polycyclic aromatic hydrocarbons (PAHs), removal from aqueous solution by the prepared carbon were conducted at different levels of carbon addition. The results indicated that the specific surface area, iodine number, and amount of methylene blue sorption increased with an increase of carbonization temperature. The maximum values were observed at 700°C and were 287.63 m g, 508.99 mg g, and 90.14 mg g, respectively. The removal efficiencies of phenanthrene, naphthalene, and acenaphthene tended to increase with increasing carbon amounts and carbonization temperature. The optimal removal performance was obtained under the experimental conditions of carbon concentrations of 0.04 g 32 mL and carbonization temperature of 700°C, and the removal efficiencies of phenanthrene, naphthalene, and acenaphthene were 99.89, 100, and 95.64%, respectively. The performance of the prepared carbon was superior to that of commercial activated carbon. Additionally, for the same carbon concentrations, the removal efficiency of PAHs on prepared carbons followed the order: phenanthrene > naphthalene > acenaphthene. Results obtained from this work provide some insight into the reuse of an agricultural residue, and also provide a new application for the treatment of PAHs in contaminated water utilizing activated carbon prepared from agricultural residues.Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

Huang L Y, Boving T B, Xing B S.

Sorption of PAHs by aspen wood fibers as affected by chemical alterations

[J]. Environmental Science & Technology, 2006, 40:3279-3284.

DOI      URL     [本文引用: 2]

孙璇. 不同作物原料生物炭对多环芳烃芘的吸附特性及其改性研究[D]. 南京: 南京农业大学, 2014.

[本文引用: 2]

张默, 贾明云, 卞永荣, .

不同温度玉米秸秆生物炭对萘的吸附动力学特征与机理

[J]. 土壤学报, 2015, 52 (5):1106-1115.

[本文引用: 3]

Nguyen T H, Cho H, Poster D L, et al.

Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char

[J]. Environmental Science & Technology, 2007, 41:1212-1217.

DOI      URL     [本文引用: 3]

Zhu D, Pignatello J J.

Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model

[J]. Environmental Science & Technology, 2005, 39:2033-2041.

DOI      URL     [本文引用: 2]

Zhu D Q, Kwon S, Pignatello J J.

Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions

[J]. Environmental Science & Technology, 2005, 39 (11):3990-3998.

DOI      URL     [本文引用: 2]

张晗, 林宁, 黄仁龙, .

不同生物质制备的生物炭对菲的吸附特性研究

[J]. 环境工程, 2016, 34 (10):166-171.

[本文引用: 3]

Gupta H, Gupta B.

Adsorption of polycyclic aromatic hydrocarbons on banana peel activated carbon

[J]. Desalination Water Treat, 2016, 57:9498-9509.

DOI      URL     [本文引用: 2]

Zolgharnein J, Shahmoradi A, Ghasemi J.

Pesticides removal using conventional and low-cost adsorbents:a review

[J]. Clean - Soil Air Water, 2011, 39:1105-1119.

DOI      URL     [本文引用: 2]

Ahmad T, Rafatullah M, Ghazali A, et al.

Removal of pesticides from water and wastewater by different adsorbents: a review

[J]. Journal of Environmental Science and Healthy Part C, 2010, 28:231-271.

[本文引用: 2]

Akhtar M, Hasany S M, Bhanger M I, et al.

Low cost sorbents for the removal of methyl parathion pesticide from aqueous solutions

[J]. Chemosphere, 2007, 66:1829-1838.

PMID      [本文引用: 2]

Sorptive potential of selected agricultural waste materials i.e. rice (Oryza sativa) bran (RB), bagasse fly ash (BFA) of sugarcane (Saccharum officinarum), Moringa oleifera pods (MOP) and rice husk (RH) for the removal of methyl parathion pesticide (MP) from surface and ground waters has been investigated. Optimization of operating parameters of sorption process, i.e. sorbent dose, agitation time, pH, initial concentration of sorbate, and temperature have been studied. The sorption data fitted to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) sorption isotherms. The maximum capacities of RB, BFA, MOP and RH for MP were calculated to be 3.6+/-0.8, 5.3+/-1.4, 5.2+/-1.5 and 4.7+/-1.0 mmolg(-1) by Freundlich, 0.39+/-0.009, 0.39+/-0.005, 0.36+/-0.004 and 0.35+/-0.008 mmolg(-1) by Langmuir and 0.9+/-0.08, 1.0+/-0.10, 1.0+/-0.10 and 0.9+/-0.07 mmolg(-1) by D-R isotherms respectively, employing 0.1g of each sorbent, at pH 6, 90 min agitation time and at 303 K. Application of first order Lagergren and Morris-Weber equations to the kinetic data yielded correlation coefficients, close to unity. Thermodynamic parameters of sorption process, i.e. DeltaH, DeltaS and DeltaG were computed and their negative values indicated the exothermic and spontaneous nature of sorption process. The pesticide may be stripped by sonication with methanol, making the regeneration and reutilization of sorbents promising. The sorbents investigated exhibited their potential applications in water decontamination, treatment of industrial and agricultural waste waters.

孙蕾, 罗伟, 袁丹, .

蔗渣炭吸附有机磷农药乐果的过程机制

[J]. 环境科学与技术, 2018, 41 (7):36-43.

[本文引用: 2]

Mohammad S G.

Biosorption of pesticide onto a low cost carbon produced from apricot stone (Prunus armeniaca):equilibrium,kinetic and thermodynamic studies

[J]. Journal of Applied Sciences Research, 2013, 9:6459-6469.

[本文引用: 2]

Islam M A, Sakkas V, Albanis T A.

Application of statistical design of experiment with desirability function for the removal of organophosphorus pesticide from aqueous solution by low-cost material

[J]. Journal of Hazardous Materials, 2009, 170:230-238.

DOI      PMID      [本文引用: 2]

This paper deals with the multiple response optimization for the removal of organophosphorus pesticide quinalphos [QP: O,O-diethyl O-2-quinoxalinyl phosphorothioate] from the aqueous solution onto low-cost material and tried to overcome the drawbacks of univariate optimization. Used tea leaves were used as low-cost adsorbent and batch equilibration method was followed for this study. A Box-Behnken design was used to develop response model and desirability function was then used for simultaneous optimization of all affecting parameters in order to achieve the highest removal% of quinalphos. The optimum conditions of factors predicted for quinalphos removal% were found to be: pH 8.83, concentration 7 mg L(-1) and dose 0.40 g. Under these conditions, maximum removal% of quinalphos was obtained 96.31%. Considering the above optimum conditions, the adsorption isotherms were developed and provided adsorption capacity of 196.07 microg g(-1) by using Langmuir equation, indicating that used tea leaves may be applied as a low-cost material for pesticides removal from aqueous matrices.

Abdeen Z, Mohammad S G.

Study of the adsorption efficiency of an eco-friendly carbohydrate polymer for contaminated aqueous solution by organophosphorus pesticide

[J]. Open Journal of Organic Polymer Materials, 2014, 4 (1):16-28.

DOI      URL     [本文引用: 2]

杨婕. 改性农业废弃生物质对水体中杀虫剂的吸附特性研究[D]. 石河子: 石河子大学, 2021.

[本文引用: 2]

王秋华. 壳聚糖-甘蔗渣活性炭的制备及其处理有机农药污染物的性能研究[D]. 长沙: 湖南农业大学, 2018.

[本文引用: 2]

Hamadeen H M, Elkhatib E A, Badawy M E I, et al.

Green low cost nanomaterial produced from Moringa oleifera seed waste for enhanced removal of chlorpyrifos from wastewater:mechanism and sorption studies

[J]. Journal of Environmental Chemical Engineering, 2021, 9 (4):105376.

DOI      URL     [本文引用: 2]

/