欢迎访问《渔业研究》官方网站,今天是 2024年10月14日 星期一 分享到:

渔业研究, 2023, 45(5): 513-522 DOI: 10.14012/j.cnki.fjsc.2023.05.012

综述

影响剑鱼分布和延绳钓CPUE的主要因素研究进展

宋利明,1,2, 张凌溪1, 包敏华1, 隋恒寿3, 李彬3, 张敏1,2

1.上海海洋大学海洋科学学院,上海 201306

2.国家远洋渔业工程技术研究中心,上海 201306

3.中水集团远洋股份有限公司,北京 100032

A review on factors influencing the distribution and longline CPUE of Xiphias gladius

SONG Liming,1,2, ZHANG Lingxi1, BAO Minhua1, SUI Hengshou3, LI Bin3, ZHANG Min1,2

1. College of Marine Sciences,Shanghai Ocean University, Shanghai 201306,China

2. National Engineering Research Center for Oceanic Fisheries, Shanghai 201306,China

3. CNFC Overseas Fisheries Co.,Ltd.,Beijing 100032,China

收稿日期: 2023-02-27  

基金资助: 国家自然科学基金(32273185)
国家重点研发项目(2020YFD0901205)
2021年农业农村部海洋渔业资源调查与探捕项目(D-8006-21-0215)

Received: 2023-02-27  

作者简介 About authors

宋利明(1968—),教授,博士,研究方向为捕捞学。E-mail:lmsong@shou.edu.cn

摘要

掌握剑鱼(Xiphias gladius)的分布特征,可为剑鱼的栖息生态、资源养护以及延绳钓渔具改进等研究提供科学依据。本文重点介绍了国内外关于影响剑鱼分布和延绳钓单位捕捞努力量渔获量(CPUE)因素等的研究成果,同时指出存在的问题,并提出今后进一步研究应采取的对策。结果表明:1)剑鱼进行昼夜垂直移动,根据水层含氧量变化呈“U”形移动模式,白天一般分布在8.5~13.3 °C相对应的水层,夜间分布在23.6~26.2 °C相对应的水层;2)剑鱼洄游到热带水域产卵和越冬,洄游到温带水域索饵;3)剑鱼聚集在锋面区和涡流场;4)月光照度影响剑鱼的垂直运动,月相也可能与剑鱼产卵行为有关;5)单丝延绳钓的剑鱼捕获率比复丝延绳钓高,浸泡时间与剑鱼CPUE呈正相关;6)使用荧光棒可提高剑鱼CPUE,荧光棒的浸泡时间与剑鱼CPUE也呈正相关。研究中存在的主要不足有:1)气侯变化与剑鱼栖息环境的关系研究不足;2)月光照度对剑鱼活动影响的定量研究较少,结论不充分;3)不同钩型、钓钩偏角与饵料对剑鱼CPUE的影响研究不足。建议今后对下列几个方面进行研究:1)增加TDR、CTD的测试实验,研究不同水层的温度、盐度、叶绿素a、溶解氧浓度等因素对剑鱼分布的影响;2)利用历史渔获统计数据、卫星遥感数据,结合海洋季风、信风的变化研究剑鱼分布与海洋环境之间的关系,找出气候变化对剑鱼分布的具体影响;3)运用照度计,定量研究月光照度对剑鱼及其饵料生物垂直运动和剑鱼产卵行为的影响;4)进一步研究不同钩型、钓钩偏角和不同饵料对剑鱼CPUE的影响。

关键词: 海表温度(SST); 海流; 盐度; 叶绿素a(CHL); 溶解氧; 月光照度; CPUE; 剑鱼

Abstract

Understanding the distribution characteristics of X.gladius can provide scientific basis for studying the habitat ecology of X.gladius,resource conservation and improving longline fishing gear.This paper highlights the results of domestic and international research on factors influencing the distribution and longline catch per unit effort (CPUE) of X.gladius,as well as the problems and proposes countermeasures to be taken for further research in the future.The results show that:1) X.gladius perform diurnal vertical movements,with a U-shaped movement pattern according to the changes of dissolved oxygen content in water layer,and generally distribute in the corresponding depth of 8.5-13.3 °C during the day and 23.6-26.2 °C during the night;2) X.gladius migrate to tropical waters for spawning and overwintering,and migrate to temperate waters for feeding; 3) X.gladius congregate in frontal areas and eddy fields;4) moonlight illumination affects the vertical movements of X.gladius,and moon phase may also be related to X.gladius spawning behavior;5) the catch rate of X.gladius in monofilament longline fishing is higher than that in polyfilament longline fishing,and the soaking time is positively correlated with the CPUE of X.gladius; 6) fluorescent rods in fishing gear can improve X.gladius CPUE,and the soaking time of fluorescent rods is positively correlated with X.gladius CPUE.The main shortcomings of the previous studies include:1) insufficient research on the relationship between climatic changes and the habitat change of X.gladius;2) less quantitative research on the effect of lunar illumination on X.gladius activity and the results are not robust;3) insufficient research on the effects of different hook types,hook offset and baits on X.gladius CPUE.The following issues are suggested for future research:1) increasing the testing experiments of TDR and CTD to study the effects of temperature,salinity,chlorophyll a and dissolved oxygen concentrations in different water layers on X.gladius distribution;2) using historical catch statistics and satellite remote sensing data to study the relationship between X.gladius distribution and marine environment in combination with changes in ocean monsoon and trade winds to find out the specific effects of climate change on X.gladius distribution;3) using illuminance meters to measure the illuminance of moonlight and quantitatively study the effects of monthly illuminance of moonlight on the vertical movements of X.gladius and their bait organisms and the spawning behavior of X.gladius; 4) further studying the effects of different hook types,hook offset and different baits on X.gladius CPUE.

Keywords: sea surface temperature(SST); ocean current; salinity; chlorophyll a(CHL); dissolved oxygen; moonlight illuminance; CPUE; Xiphias gladius

PDF (994KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

宋利明, 张凌溪, 包敏华, 隋恒寿, 李彬, 张敏. 影响剑鱼分布和延绳钓CPUE的主要因素研究进展[J]. 渔业研究, 2023, 45(5): 513-522 DOI:10.14012/j.cnki.fjsc.2023.05.012

SONG Liming, ZHANG Lingxi, BAO Minhua, SUI Hengshou, LI Bin, ZHANG Min. A review on factors influencing the distribution and longline CPUE of Xiphias gladius[J]. Journal of Fujian Fisheries, 2023, 45(5): 513-522 DOI:10.14012/j.cnki.fjsc.2023.05.012

剑鱼(Xiphias gladius),隶属鲈形目(Perciformes)、剑鱼科(Xiphiidae)、剑鱼属(Xiphias),是一种大型大洋高度洄游性鱼类,大约分布在50°N至50°S的热带和温带海域[1],是金枪鱼延绳钓渔业重要的捕捞对象之一,也是世界重要经济鱼类之一,经济价值与大眼金枪鱼相当[2]。目前在大西洋,90%以上的剑鱼是被延绳钓捕获的[3]。剑鱼支持着全球重要的商业渔业,1950—2018年全球年捕获量约为(11~12)×104 t[4]。近几十年来,以该物种为目标鱼种的渔业已经形成。全球剑鱼捕获量中来自太平洋的比例越来越高,该区域的剑鱼总渔获量占全球剑鱼渔获量的50%左右[4]。剑鱼在体型上存在性别差异,雌性的最大体长大于雄性,而太平洋个体的最大体长大于其他大洋观察到的个体[5]。近年来,养护大西洋金枪鱼国际委员会(International Commission for the Conservation of Atlantic Tuna,ICCAT)对于大西洋剑鱼的年龄和生长[6]、体长-体质重关系[7]、繁殖[8-10]等生物学特性和资源状况等进行了广泛的研究。

对于影响剑鱼栖息环境的研究主要分为生物学因素、环境因素等,其中生物学因素包括剑鱼的洄游、栖息地条件、产卵场特征等;环境因素包括温度、洋流锋面、大气气候等;其他因素包括夜间的月光、月相、潮汐力。本文介绍了国内外关于影响剑鱼分布、剑鱼延绳钓单位捕捞努力量渔获量(Catch per unit effort,CPUE)的主要因素等研究取得的成果和存在的不足,为今后进一步研究剑鱼的栖息生态、资源养护以及改进延绳钓渔具等提供科学依据。

1 影响剑鱼分布的主要因素研究进展

1.1 生物学因素

剑鱼栖息环境的变化很大程度上是由自身的生物学因素造成的,涉及剑鱼的季节性洄游、昼夜垂直活动(捕食)和产卵等方面的研究。国内外对剑鱼的生物学因素与其分布的关系研究进展见表1

表1   剑鱼的生物学因素与其分布的关系研究进展

Tab.1  Research progress on the relationship between biological factors of X.gladius and its distribution

研究者(年份)
Researchers (year)
研究方法
Research methods
研究结果
Study results
不足之处
Defects
Carey F G
等(1981)[11]
声学遥测剑鱼具有昼夜垂直活动的特征遥测跟踪的时间有限
Gilman E
等(2007)[12]
卫星标志放流剑鱼昼夜垂直运动根据水层含氧量变化呈“U”形(夜间、黎明、黄昏在表层,白天在深处)研究中使用的溶解氧浓度估计值存在不确定性;地理位置估计有误差;测量深度的次数有限
Chancollon O
等(2006)[13]
卫星标志放流成年剑鱼垂直活动行为与饵料生物(鱿鱼和中上层鱼类)的垂直活动一致忽略了不同水层含氧量的变化
Behrenfeld M J
等(2006)[14]
统计分析净初级生产力(Net primary production,NPP)提高,浮游植物及喜食生物增加,造成剑鱼聚集忽略了海洋锋面区、涡流场和海表温度(See surface temperature,SST)的影响
Neilson J D
等(2007)[15]
基因组学和电
子标志放流
太平洋不止一个剑鱼种群;分析的遗传标记显示太平洋不同地区之间种群有差异没有研究不同种群之间的洄游活动及不同种群的栖息环境的异同
Neilson J D
等(2009)[16]
卫星标志放流剑鱼在西北大西洋具有一致的季节性洄游模式电子标志过早脱离剑鱼、海水对标志腐蚀、电池故障或硬件损坏、样本量少
Poisson F
等(2009)[17]
温盐深仪(Conductivity
temperature depth,CTD)
海上实测
剑鱼选择在SST上升海域产卵只研究SST对产卵行为的影响,忽略了其他因素
Dewar H
等(2011)[18]
卫星标志放流确定了剑鱼的季节性洄游;剑鱼有较固定的栖息和产卵水域研究范围过大、样本量少,结论以偏概全

新窗口打开| 下载CSV


剑鱼是视觉捕食者,眼睛大,可在昏暗的光线下追逐猎物,依靠视觉来定位深水中的猎物[19]。成年剑鱼是随机捕食者,主要摄食乌贼(Sepia officinalis)、卵形鲳鲹(Trachinotus ovatus)、章鱼(Octopodidae)及较小的甲壳类动物[20]。不同的环境亮度是影响剑鱼摄食行为变化的因素之一[21]。剑鱼头部有一个产热器官[22],起到大脑加热器的作用,其适温范围较大,温差高达21.4 °C[23]。剑鱼具有大量的白纤肌肉,比其他大型鱼类更耐缺氧[19],因此其具有适应低氧和低温栖息地的能力。

卫星标签上的温度记录显示,剑鱼白天的栖息深度(中值)范围为449~656 m,夜间深度范围为54~108 m,昼夜运动变化呈“U”字型[23],垂直分布通常受温跃层深度的限制。剑鱼在白天和夜间的栖息水层差异较大,白天87%的时间栖息水层在400~800 m之间;夜间离水面较近,71%的时间在100 m以浅,93%的时间在200 m以浅;黄昏时分,剑鱼分布在更深的范围内,87%的时间栖息水层在200~700 m之间[24]

剑鱼的产卵行为研究表明,在产卵季节剑鱼往往会洄游到温度较高的热带水域[25]。对剑鱼的季节性洄游进行研究,证明这些洄游可能是SST随季节性变化的结果[26]。另外,海洋中的溶解氧浓度是影响海洋鱼类活动的重要因素,每个物种都有不同的耐受阈值。在溶解氧水平较低的海域,剑鱼在白天靠近海表面的时间可能较长[27]

1.2 环境因素

不同海域的气候条件、SST、洋流锋面、叶绿素a浓度(Chlorophyll a,CHL)不同,然而这些海洋环境与剑鱼的分布均有直接的关系。卫星遥感是研究海洋环境对大型和高度洄游的远洋鱼类(剑鱼)的分布、聚集和运动的重要工具。海洋环境因素对剑鱼分布的影响研究进展见表2

表2   海洋环境因素对剑鱼分布的影响研究进展

Tab.2  Research progress on the influence of environmental factors on the distribution of X.gladius

研究者(年份)
Researchers (year)
研究方法
Research methods
研究结果
Study results
不足之处
Defects
Owen R W(1981)[28]遥感观测锋面区、涡流场CHL和浮游动物丰度局部升高,导致饵料生物的局部聚集,形成良好的剑鱼摄食环境仅从食物链角度进行推测
Sedberry G
等(2001)[29]
遥感观测和卫星
标志放流
温度对剑鱼生理有着显著的影响,对其水平和垂直运动也有影响只通过遥感观测温度变化和标志放流观测剑鱼运动,忽略了气候等的影响
Seki M P
等(2002)[26]
遥感观测和温深仪
(Temperature depth
recorder,TDR)实验
洋流锋面和涡流场聚集浮游生物,发展成剑鱼索饵场实验时变量过多,结果需进一步验证
Takahashi M
等(2003)[30]
卫星标志放流和
样本分析
剑鱼洄游到热带水域产卵和越冬,洄游到温带水域索饵;剑鱼的性别比和体长分布随季节变化只研究了印度洋海域;样本记录有误差
Belkin I M
等(2009)[31]
遥感观测CHL和SST可以促进剑鱼最佳栖息地的形成未得到实验验证
Hsu A C
等(2011)[32]
气象观测气候变化导致各种海洋学特征发生大规模变化,从而影响剑鱼分布和水平运动只研究了气候变化对剑鱼种群整体的影响,没有得出具体的影响因素
Bell J D
等(2011)[33]
气候与温盐深度分析在印度洋偶极子(Indian ocean dipole,IOD)期间,中上层物种的适宜栖息地减少,导致剑鱼生存难度加大大规模气候变化,研究变量复杂,忽略了其他影响因素
Chang Y J
等(2012)[34]
钓钩深度模型和
遥感观测
证实了大范围的环境或气候变化,如厄尔尼诺/南方涛动现象(El nino southern oscillation,ENSO),在更大区域范围内影响SST、CHL、剑鱼栖息环境,从而影响整个剑鱼种群的洄游和产卵行为大规模气候变化研究,结论以偏概全,忽略了其他影响因素
Lan K W
等(2014)[35]
广义加性模型印度洋偶极子(Indian ocean dipole,IOD)引起的海表温度差导致海洋环境的变化,如NPP、SST的变化,对剑鱼的丰度产生影响气候变化复杂,IOD事件对剑鱼种群的具体影响不清楚
Pizarro A G
等(2020)[36]
遥感观测和卫星
标志放流
秘鲁寒流影响的区域是剑鱼高分布区,这是因为较高的NPP发生在锋面区域;沿海地区的高饵料生物密度形成了剑鱼索饵场样本量少,取样范围小,可能是小部分剑鱼的特殊行为

新窗口打开| 下载CSV


海洋气候环境复杂,影响区域面积大,在研究海洋环境因素及气候变化对剑鱼影响时,需进一步把卫星遥感方法应用到渔业海洋学中,将卫星遥感数据与卫星海洋热量信息数据结合使用[16]。气候变化可能导致世界海洋大规模的年际变化。ENSO事件的发生,可能会使剑鱼的分布发生重大变化,因为它们对气候变化表现出强烈的年际响应[32]。在IOD事件期间,沿海上升流减少,生产力降低,混合层深度(Mixed layer depth,MLD)的加深进一步将生产力分散到更深的水层,当较强东风造成足够强的表面洋流时,延绳钓下沉的速度和深度往往比洋流弱时要慢、浅,从而对剑鱼的CPUE造成影响[35],由IOD引起的印度洋西北部的海表温度差导致海洋环境的变化,如NPP和MLD的变化,同样对剑鱼的丰度产生影响[28]

SST、CHL、MLD、海表面高度异常(Sea surface height anomaly,SSHA)等环境因素强烈影响剑鱼的分布及其CPUE[34]。在伊比利亚半岛西部海域,当遇到海洋温暖上升流时,局部海域SST升高,CHL也明显提高,同时海表面浮游植物富集,形成剑鱼索饵场[37]。研究发现剑鱼白天96%的时间分布在8~16 °C,夜间82%的时间分布在24~30 °C,黄昏90%的时间分布在8~20 °C,总体上剑鱼白天分布在8.5~13.3 °C及夜间分布在23.6~26.2 °C相对应的水层[24]。由于不同水团之间的剪切力,如环流和漩涡[26],使得流动性较差的饵料生物聚集。在剑鱼摄食期间,东地中海地区的剑鱼密度值对应的SSHA范围位于涡流周围的区域,通常情况下这些区域剑鱼的饵料生物丰度很高[25]。锋面区和涡流场CHL和浮游动物丰度局部升高[38],间接影响饵料生物的局部聚集,从而导致剑鱼聚集。但关于剑鱼丰度和锋面之间的直接关系的研究很少,相关观点难以直接验证[39]。研究发现葡萄牙大陆沿岸SST及其变化影响剑鱼分布,每年的8月是上升流的高峰期,剑鱼渔获量随上升流高峰期的到来而逐渐提高[40]。研究证明剑鱼CPUE与SST、MLD、SSHA、CHL之间存在非线性关系,其中SST比其他三个变量更显著;剑鱼对SST具有敏感性,在剑鱼延绳钓作业中,SST、MLD需在剑鱼最适温度范围内,且捕获剑鱼具有季节性 [41-42]。潮汐波动和海洋局部流速的影响是复杂的。高速洋流会冲散混合层的浮游生物,也可能通过平流生物体和颗粒物影响海洋局部的浊度,使剑鱼等依靠视觉捕食受到影响[43]。研究发现剑鱼CPUE与潮汐力相关,较高的剑鱼CPUE出现在较低的潮汐波动中,这与潮汐力产生的低速洋流相吻合[44]。高速洋流可以改变延绳钓在海面下的形状和深度[43],使剑鱼CPUE与潮汐力呈负相关,因而在潮汐波动小时,其CPUE较高。

2 影响剑鱼延绳钓CPUE的主要因素研究进展

2.1 月光和月相等对剑鱼CPUE的影响

研究发现剑鱼延绳钓在夜晚作业时,月光、月相和潮汐力对剑鱼CPUE的影响也较大,其研究进展见表3

表3   月光和月相等对剑鱼CPUE的影响研究进展

Tab.3  Research progress on the influence of moonlight and moon phase on X.gladius CPUE

研究者(年份)
Researchers (year)
研究方法
Research methods
研究结果
Study results
不足之处
Defects
Loefer J K等(2007)[45]照度计实验和
样本分析法
月球光照周期呈现不均匀的正弦函数模式,在满月和新月之前的CPUE最高结果不具有普遍解释性
Canese S等(2008)[46]电磁波功率谱
密度分析
剑鱼在昼夜和月球公转周期中表现出垂直移动的模式样本量少,不足以说明月相与剑鱼垂直运动的直接关系
Poisson F等(2010) [44]声学遥测技术较低的潮汐波动适合捕捞剑鱼。高潮汐波动造成MLD中饵料分散、通过平流生物体和颗粒物影响浊度、改变延绳钓的形状和深度忽略了赤道潜流对潮汐力的影响
Dewar H等(2011)[47]卫星标志放流验证了北大西洋西部剑鱼的栖息深度随月光照度的增加而加深不同月光照度对剑鱼CPUE的具体影响研究不足
Orbesen E S等(2016)[48]对比实验和广义
线性模型
剑鱼在月球低照度期间表现出最高的捕获率研究对象多至18种,单一物种样本量较少
Suca J J等(2018)[49]照度计实验月相与剑鱼产卵时间之间存在联系。剑鱼幼鱼的高CPUE出现在月牙期和满月期实验显示月相与剑鱼产卵时间有关,但是具体的影响程度不清楚

新窗口打开| 下载CSV


月光周期被分为两个阶段:明亮期和黑暗期。从上弦月—盈凸月—满月—亏凸月—下弦月被认为是明亮期,而从下弦月—新月—上弦月为黑暗期[50]。在北大西洋西部和加勒比海的研究表明,剑鱼的栖息深度随着月球光照的增加而增加[45]。在印度洋,通过对照实验发现,在月光周期的明亮期,剑鱼的CPUE达到最高[51]。在大西洋西部的美国延绳钓渔业中,在满月前后的两周时间里,渔民根据经验增加了更多的钓钩[52-53]。这些发现表明,月相对剑鱼的CPUE有较大的影响。然而,在古巴沿海的剑鱼捕捞作业中,月相与剑鱼CPUE之间没有明显的关系[54]。同样在以往研究剑鱼的部分调查中也未能直接证明月球光照与剑鱼CPUE之间存在显著相关性,对此有一种解释是,这可能与剑鱼的饵料生物对月光敏感程度有关,在大西洋研究剑鱼的饵料生物大小时,发现剑鱼没有固定的食性偏好,而是表现出不同的捕食策略,如与较小的剑鱼相比,较大的剑鱼往往吃更大的饵料生物,而不同大小的饵料生物对月光的敏感程度不同[13]。通过研究,发现剑鱼饵料生物大小随着剑鱼体长的增大而增大,且这种变化与剑鱼喜食饵料从鱼类到头足类的转变相吻合[20],剑鱼CPUE随月相的变化可能与月光引起的头足类(重要的剑鱼饵料生物)垂直分布的变化有关[41],说明在今后研究剑鱼与月光关系时,需同步研究剑鱼喜食饵料与月光的关系。

2.2 延绳钓钓具因素对剑鱼CPUE的影响

除了月光、月相因素外,延绳钓钓具因素对剑鱼CPUE也有影响。西北大西洋延绳钓渔业研究证实,剑鱼CPUE与使用的荧光棒数量呈正相关[55]。Vega R等[56]分别对美国和西班牙延绳钓钓具进行了研究,美国使用聚酰胺单丝钓线,而西班牙使用由聚乙烯复丝组成的钓线,结果发现使用单丝延绳钓的剑鱼捕获率更高,而使用复丝延绳钓的鲨鱼捕获率更高,单丝延绳钓的剑鱼捕获率与浸泡时间之间呈正相关,而复丝延绳钓的鲨鱼捕获率与浸泡时间之间呈正相关,认为在表层延绳钓中使用聚酰胺单丝的钓线可减少鲨鱼等副渔获物。不同方法研究延绳钓钓具因素对剑鱼CPUE的影响如表4所示。

表4   延绳钓钓具因素对剑鱼CPUE的影响研究进展

Tab.4  Research progress on the effect of longline gear factors on X.gladius CPUE

研究者(年份)
Researchers (year)
研究方法
Research methods
研究结果
Study results
不足之处
Defects
Guyomard D
等(2004)[51]
钓钩深度模型强风造成足够强的表面洋流时,延绳钓钓钩下沉的速度和深度往往比洋流弱时要慢、浅,从而影响剑鱼的CPUE忽略了赤道潜流的影响
Hazin F H V
等(2005)[57]
对比实验60%~80%的剑鱼是在渔具浸泡后的前6 h捕获的,饵料鲜度影响CPUE;荧光棒影响CPUE不同种类饵料的对比实验较少
Beverly S等(2009)[58]钓钩和饵料对比实验从J型钩到圆型钩的转变时,剑鱼的CPUE少量减少;饵料对CPUE的影响较小;钩饵组合对CPUE影响也不显著对比实验组数较少,对不同钩型与饵料的多种组合研究不够
Lan K W等(2014)[35]钓钩深度和广义
线性模型
钓钩深度分布在21~24 °C的水层,当MLD在30~80 m之间时,获得最高的CPUE研究时间短,仅为IOD事件期间的特例
Dell J等(2020)[59]对比实验鱿鱼比其他饵料更适合钓剑鱼;钓钩附上荧光棒增加剑鱼的CPUE饵料对比实验组数少,未考虑荧光棒浸泡时间的影响

新窗口打开| 下载CSV


研究发现延绳钓钓具因素对剑鱼CPUE的影响主要在于延绳钓的材质和浸泡时间等[56]。选择单丝材质的延绳钓钓具的剑鱼捕获率优于复丝材质的延绳钓钓具;单丝延绳钓钓具浸泡时间越久,剑鱼上钩率越高[60]。钓具上装配荧光棒也是提高剑鱼捕获率的关键,并且荧光棒的浸泡时间与捕获率呈正相关[57]

3 总结

3.1 研究取得的成果

本文综述了国内外关于影响剑鱼分布和剑鱼CPUE因素的研究进展,前人研究成果如下。

3.1.1 生物学因素

1)剑鱼在昼夜垂直移动时,受水层含氧量变化影响,运动轨迹呈“U”形(夜间、黎明和黄昏在表层,白天在深处),剑鱼的活动分布与含氧量呈正相关[12,23]

2)海洋中NPP提高,浮游植物及剑鱼喜食生物增加,使剑鱼聚集[14]

3)剑鱼的性别比和体长分布随季节变化,成年剑鱼垂直分布与其饵料生物(鱿鱼和中上层鱼类)的昼夜垂直活动一致[13]

4)温度对剑鱼生理产生影响,SST的上升可能会在印度洋形成产卵区;剑鱼洄游到热带水域产卵和越冬,洄游到温带水域索饵[17]

3.1.2 环境因素

1)剑鱼一般白天分布在8.5~13.3 °C相对应的水层,夜间分布在23.6~26.2 °C相对应的水层[23]

2)锋面区和涡流场使CHL和浮游动物丰度局部升高,引起剑鱼饵料生物的局部聚集,从而形成剑鱼渔场[28]

3)当强风造成足够强的表面洋流时,延绳钓钓钩下沉的速度和深度往往比洋流弱时要慢、浅,从而影响剑鱼的CPUE [51]

4)气候变化导致各种海洋学特征发生大规模变化,从而影响剑鱼分布[32-36]

3.1.3 月光和月相

月光、月相、潮汐力等对剑鱼垂直分布也会产生影响。在新月期,剑鱼分布较密集,垂直活动深度随月球光照的增加而加深[45-54]

3.1.4 钓具因素

1)延绳钓钓具的材质对剑鱼CPUE的提高起到重要作用,使用单丝延绳钓、增加钓具浸泡时间可以提高剑鱼的捕获率[56,60]

2)钓具上装配荧光棒及荧光棒的浸泡时间对剑鱼CPUE的影响较大[57]

3.2 研究中存在的不足

1)剑鱼属于高度洄游物种,在对其习性的研究中,常常遇到研究样本不足、背鳍卫星标志掉落、数据传输不稳定,以及将有卫星标志的剑鱼放回海洋时,其因生命力降低而死亡等问题,需进一步对剑鱼的生物学进行研究[11-18]

2)三大洋海域具有不同的气象环境。赤道东太平洋地区的风场、ENSO现象、IOD震荡现象等都会间接影响剑鱼种群分布或者运动,气侯变化与剑鱼栖息环境的关系研究不足。

3)月光照度与剑鱼的垂直运动、产卵有关,但是对两者之间的具体关系研究仍不足。月光随月相周期的变化而变化,导致其照度也随之变化。月光照度的定量研究实验较少,结论不充分。

4)不同钩型、钓钩偏角与饵料对剑鱼CPUE的影响研究不足。

3.3 建议

1)增加剑鱼卫星标志的样本量,积累更多不同海域的实验数据。研究标志放流的技术和方法,提高剑鱼释放后的成活率。当释放剑鱼回海时,特别注意剑鱼的各项体征,保证其较高的成活率。

2)在各大洋各海域进行更多的TDR、CTD测试实验,比较研究不同水层的CHL、温度、含氧量等对剑鱼分布的影响。确定海洋环境对剑鱼垂直移动和水平洄游的影响。

3)利用历史渔获统计数据、卫星遥感数据和大范围气候变化数据,结合海洋季风、信风的变化,研究剑鱼分布与海洋环境之间关系,找出气候变化对剑鱼分布的具体影响。

4)运用照度计测定照度,定量研究月相和月光照度对剑鱼垂直运动和剑鱼产卵行为的影响。

5)在延绳钓主捕剑鱼时,增加不同钓钩类型、不同偏角和饵料种类对剑鱼CPUE影响的对比实验。

参考文献

Zhao R X, Miu S C.

Basic survey of swordfish in the world

[J]. Modern Fisheries Information, 2006, 21(11):13-16.

[本文引用: 1]

Song L M, Xu L X.

Preliminary analysis of the biological characteristics of swordfish (Xiphias gladius) sampled from the Chinese tuna long-lining fleet in the central Atlantic Ocean

[C]//ICCAT.Collective Volume of Scientific Papers. Madrid:ICCAT, 2004, 56(3):940-946.

[本文引用: 1]

ICCAT.

Report of the 2009 Atlantic swordfish stock assessment session

[R]. Madrid:ICCAT, 2009:1-78.

[本文引用: 1]

Ducharme-Barth N, Castillo-Jordán C, Hampton J, et al.

Stock assessment of Southwest Pacific swordfish

[C]// WCPFC.17th Regular Session of the Scientific Committee.Pohnpei:WCPFC, 2021:1-7.

[本文引用: 2]

Ortiz M, Justel-Rubio A, Parrilla A.

Preliminary analyses of the ICCAT VMS data 2010-2011 to identify fishing trip behavior and estimate fishing effort

[C]// ICCAT.Collective Volume of Scientific Papers. Madrid:ICCAT, 2013, 69(1):462-481.

[本文引用: 1]

Ehrhardt N M.

Age validation and growth of swordfish (Xiphias gladius) in the northwest Atlantic Ocean

[J]. Bulletin of Marine Science, 1992, 50(2):292-301.

[本文引用: 1]

García-Cortés B, Mejuto J.

Size-weight relationships of the swordfish (Xiphias gladius) and several pelagic shark species caught in the Spanish surface longline fishery in the Atlantic,Indian and Pacific Oceans[C]// ICCAT.Collective Volume of Scientific Papers

Spain:ICCAT, 2002, 54(4):1132-1149.

[本文引用: 1]

Mejuto J, García-Cortés B.

Size segregation,sex ratios patterns of the swordfish (Xiphias gladius) caught by the Spanish surface longline fleet in areas out of the Atlantic ocean and methodological discussion on gonadal indices

[C]// ICCAT.Collective Volume of Scientific Papers. Spain:ICCAT, 2003, 55(4):1459-1475.

[本文引用: 1]

Mejuto J, García-Cortés B.

A description of a possible spawning area of the swordfish (Xiphias gladius) in the tropical northwest Atlantic

[C]// ICCAT.Collective Volume of Scientific Papers. Spain:ICCAT, 2003, 55(4):1449-1458.

[本文引用: 1]

Hazin F H V, Hazin H G, Boeckmann C E.

Preliminary study on the reproductive biology of swordfish(Xiphias gladius) in the southwest equatorial Atlantic Ocean

[C]//ICCAT.Collective Volume of Scientific Papers. Spain:ICCAT, 2002, 54(5):1560-1569.

[本文引用: 1]

Carey F G, Robison B H.

Daily patterns in the activities of swordfish Xiphias gladius observed by acoustic telemetry (Altantic,Pacific)

[J]. Fishery Bulletin, 1981, 79(2):277-292.

[本文引用: 2]

Gilman E, Kobayashi D, Swenarton T, et al.

Reducing sea turtle interactions in the Hawaii-based longline swordfish fishery

[J]. Biological Conservation, 2007, 139(1-2):19-28.

DOI      URL     [本文引用: 3]

Chancollon O, Pusineri C, Ridoux V.

Food and feeding ecology of Northeast Atlantic swordfish (Xiphias gladius) off the Bay of Biscay

[J]. ICES Journal of Marine Science, 2006, 63(6):1075-1085.

DOI      URL     [本文引用: 4]

As part of a larger project on the feeding ecology of large pelagic predators off the Bay of Biscay, this study analyses the diet of the swordfish, Xiphias gladius. Stomachs were collected from 86 swordfish. The diet was analysed in terms of prey occurrence, relative abundance, reconstituted mass, and size distribution. It consisted mainly of fish, 40.5% by mass (%M) and cephalopods, 59.3%M; crustaceans, 0.2%M, were considered secondary prey. When considering only the fresh fraction to allow for differential digestion rates, these figures were 77.3%M, 22.7%M, and trace amounts, respectively. Lanternfish, including Notoscopelus kroeyeri and Symbolophorus veranyi, were abundant, but paralepidids, Atlantic pomfret (Brama brama), and the squid Todarodes sagittatus, Ommastrephes bartramii, and Gonatus steenstrupi, dominated the diet by mass. The overall prey size range was 11–1420 mm, but sizes of 60–360 mm accounted for 80% of the distribution by number and of 140–760 mm for 80% of the distribution by mass. Intraspecifically, larger swordfish ate larger prey as a result of a change in species composition of the diet. The swordfish appears to show feeding plasticity both between different areas and between animals in the same area.

Behrenfeld M J, O’Malley R T, Siegel D A, et al.

Climate-driven trends in contemporary ocean productivity

[J]. Nature, 2006, 444(7120):752-755.

DOI      [本文引用: 3]

Neilson J D, Paul S D, Smith S C.

Stock structure of swordfish (Xiphias gladius) in the Atlantic:a review of the non-genetic evidence

[C]// ICCAT.Collective Volume of Scientific Papers. Canada:ICCAT, 2007, 61:25-60.

[本文引用: 2]

Neilson J D, Smith S, Royer F, et al. Investigations of horizontal movements of Atlantic swordfish using pop-up satellite archival tags[M]. Springer,Dordrecht: Tagging and tracking of marine-animals with electronic devices, 2009:145-159.

[本文引用: 3]

Poisson F, Fauvel C.

Reproductive dynamics of swordfish (Xiphias gladius) in the southwestern Indian Ocean (Reunion Island).Part 2:fecundity and spawning pattern

[J]. Aquatic Living Resources, 2009, 22(1):59-68.

DOI      URL     [本文引用: 3]

Dewar H, Prince E D, Musyl M K, et al.

Movements and behaviors of swordfish in the Atlantic and Pacific Oceans examined using pop-up satellite archival tags:Swordfish movements in the Atlantic and Pacific Oceans

[J]. Fisheries Oceanography, 2011, 20(3):219-241.

DOI      URL     [本文引用: 2]

Abecassis M. Modélisation des interactions entre l'espadon,la tortue caouanne et les palangriers dans l'océan Pacifique Nord[D]. France: Université de Toulouse, 2012.

[本文引用: 2]

Palko B J, Beardsley G L, Richards W J. Synopsis of the biology of the swordfish,Xiphias gladius Linnaeus[M]. Seattle,Washington: US Department of Commerce,National Oceanic and Atmospheric Administration,National Marine Fisheries Service, 1981.

[本文引用: 2]

Lee H J, Jong Y J, Chang L M, et al.

Propulsion strategy analysis of high speed swordfish

[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2009, 52(175):11-20.

DOI      URL     [本文引用: 1]

Carey F G.

Further acoustic telemetry observations of swordfish

[C]// ICCAT.Proceedings of the Second International Billfish Symposium. United Kingdom: ICCAT, 1990:103-21.

[本文引用: 1]

Abascal F J, Mejuto J, Quintans M, et al.

Horizontal and vertical movements of swordfish in the Southeast Pacific

[J]. ICES Journal of Marine Science, 2010, 67(3):466-474.

DOI      URL     [本文引用: 4]

Abascal, F. J., Mejuto, J., Quintans, M., and Ramos-Cartelle, A. 2010. Horizontal and vertical movements of swordfish in the Southeast Pacific. – ICES Journal of Marine Science, 67: 466–474. In all, 21 swordfish (Xiphias gladius) were tagged with pop-up archival satellite tags in the Southeast Pacific. Despite problems of premature release, the information obtained provided insight into the horizontal and vertical behaviour of the species in the area. A consistent migratory pattern was observed, fish moving northwest by autumn and presumably returning south by early spring. Swordfish typically forage in deep water during the day and stay in the mixed layer at night, although this behaviour is occasionally modified. The maximum depth recorded was 1136 m, and dives deeper than 900 m were found in five of the six tags analysed. There was a significant positive relationship between average depth by night and visible moon fraction.

Lerner J D, Kerstetter D W, Prince E D, et al.

Swordfish vertical distribution and habitat use in relation to diel and lunar cycles in the western North Atlantic

[J]. Transactions of the American Fisheries Society, 2013, 142(1):95-104.

DOI      URL     [本文引用: 2]

The vertical movement patterns of eight Swordfish Xiphias gladius from 109‐ to 249‐cm lower jaw fork length in the western North Atlantic were studied utilizing pop‐up archival transmitting tags. Deployments ranged from 120 to 151 d. Swordfish demonstrated significant differences in depth and temperature distributions between daytime and nighttime periods. Individual Swordfish behavior was characterized by occupying surface waters of less than 100 m during the night and depths greater than 400 m during daytime hours, vertical movements between the surface and depth occurring during crepuscular hours. The maximum depth recorded was 1,448 m (one of the deepest recorded depths for the species). Daytime surfacing behavior was seen in all tagged Swordfish, a rare finding for Swordfish in tropical latitudes. A dominant diurnal period of 1 cycle/d was found from a power spectral density analysis of five of the tagged Swordfish, a novel method for determining periodicity in the behavior of tagged animals. Regression analysis indicated a significant positive relationship between depth and fraction of the moon illuminated, supporting anecdotal and vessel logbook information from local Swordfish fisheries indicating changes in depth in relation to lunar phase.

Tserpes G, Peristeraki P, Valavanis V D.

Distribution of swordfish in the eastern Mediterranean,in relation to environmental factors and the species biology

[J]. Hydrobiologia, 2008, 612(1):241-250.

DOI      URL     [本文引用: 2]

Seki M P, Polovina J J, Kobayashi D R, et al.

An oceanographic characterization of swordfish (Xiphias gladius) longline fishing grounds in the springtime subtropical North Pacific

[J]. Fisheries Oceanography, 2002, 11(5):251-266.

DOI      URL     [本文引用: 3]

During January–May, surface manifestation of multiple, individual basin‐scale fronts accentuate the central North Pacific Subtropical Frontal Zone (STFZ) system. The most prominent of these fronts are climatologically located at 32°−34°N and at 28°−30°N latitudes [herein nominally referred to as the ‘Subtropical Front’ (STF) and the ‘South Subtropical Front’ (SSTF), respectively], although considerable interannual variability in both position and intensity is observed. This seasonally dynamic system is also the region typically targeted by the Hawaii‐based swordfish (Xiphias gladius) longline fishing fleet, where the presence, position, and strength of the convergent fronts are believed to play a key role with regard to the catch and catch rates of swordfish. Information furnished by a recent series of meridional hydrographic surveys and concurrent satellite remote sensing data elucidate structural patterns and coupling of the physics and biology associated with these fronts. This enables a re‐characterization of the spring North Pacific STFZ and offers new insight into the seasonal variability of the phytoplankton dynamics in the subtropical North Pacific.

Griffiths R C. Physical,chemical and biological oceanography at the entrance to the Gulf of California,spring of 1960[M]. Falls Church,Virginia: US Department of the Interior, Bureau of Commercial Fisheries, 1968.

[本文引用: 1]

Owen R W.

Fronts and eddies in the sea:mechanisms,interactions and biological effects

[J]. Analysis of Marine Ecosystems, 1981:197-233.

[本文引用: 3]

Sedberry G R, Loefer J K.

Satellite telemetry tracking of swordfish,Xiphias gladius,off the eastern United States

[J]. Marine Biology, 2001, 139:355-360.

DOI      URL     [本文引用: 1]

Takahashi M, Okamura H, Yokawa K, et al.

Swimming behaviour and migration of a swordfish recorded by archival tag

[J]. Marine and Freshwater Research, 2003, 54(4):527-534.

DOI      URL     [本文引用: 1]

An archival tag equipped with sensors for temperature, depth and luminous intensity is an excellent method to elucidate behaviour and migration of marine organisms. Herein, what we believe is the first successful archival tag experiment with swordfish in the world is reported. The swordfish, which was harpooned with an archival tag encased in a plastic capsule, was released in July 1999 off the east coast of Japan. The fish was recaptured by a harpoon fishing vessel in June 2000, only 103 km from the tagging location and weighed approximately 120-kg. By comparing the water temperature data of the archival tag with oceanographic data, a cyclic seasonal migration between the food-rich Oyashio cold current area (40–45°N) during summer and the subtropical wintering area (10–20°N) was suggested. During most of the days of observation and for the majority of the time within a day, tagged fish swam in cold water (3–6°C) and deeper than approximately 200 m; at night, fish generally stayed near the warmer surface waters (21–27°C). The greatest swimming depth was approximated to be 900 m, deduced from ambient water temperature data. The swimming depth and behaviour pattern changed in response to the ambient water temperature.

Belkin I M, Cornillon P C, Sherman K.

Fronts in large marine ecosystems

[J]. Progress in Oceanography, 2009, 81(1-4):223-236.

DOI      URL     [本文引用: 1]

Hsu A C, Boustany A M, Roberts J J, et al.

Tuna and swordfish catch in the U.S.northwest Atlantic longline fishery in relation to mesoscale eddies

[J]. Fisheries Oceanography, 2015, 24(6):508-520.

DOI      URL     [本文引用: 3]

Bell J D, Johanna J E, Hobday A J. Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change[M]. Noumea,New Caledonia: Secretariat of the Pacific Community, 2011.

[本文引用: 2]

Chang Y J, Sun C L, Chen Y, et al.

Habitat suitability analysis and identification of potential fishing grounds for swordfish,Xiphias gladius,in the South Atlantic Ocean

[J]. International Journal of Remote Sensing, 2012, 33(23):7523-7541.

DOI      URL     [本文引用: 3]

Lan KW, Lee M A, Wang S P, et al.

Environmental variations on swordfish (Xiphias gladius) catch rates in the Indian Ocean

[J]. Fisheries Research, 2015, 166:67-79.

DOI      URL     [本文引用: 4]

Pizarro A G, Barría P.

Characterization of the swordfish (Xiphias gladius) fishery in Chile

[R]. Latin American Institute of Fisheries:SWO-01 Meeting Report, 2020, 12:25-28.

[本文引用: 2]

Fiúza A.

Mesoscale and submesoscale shelf-ocean exchange processes off western Iberia

[R]. Instituto de Oceanografia, Universidade de Lisboa: MORENA Scientific and Technical Report, 1996:39.

[本文引用: 1]

Podesta G P, Browder J A, Hoey J J.

Exploring the association between swordfish catch rates and thermal fronts on US longline grounds in the western North Atlantic

[J]. Continental Shelf Research, 1993, 13(2-3):253-277.

DOI      URL     [本文引用: 1]

Bigelow K A, Boggs C H, He X I.

Environmental effects on swordfish and blue shark catch rates in the US North Pacific longline fishery

[J]. Fisheries Oceanography, 1999, 8(3):178-198.

DOI      URL     [本文引用: 1]

Generalized additive models (GAMs) were applied to examine the relative influence of various factors on fishery performance, defined as nominal catch‐ per‐unit‐effort (CPUE) of swordfish (Xiphias gladius) and blue shark (Prionace glauca) in the Hawaii‐based swordfish fishery. Commercial fisheries data for the analysis consisted of a 5 year (1991–1995) time series of 27 901 longline sets. Mesoscale relationships were analysed for seven physical variables (latitude, longitude, SST, SST frontal energy, temporal changes in SST (ΔSST), SST frontal energy (ΔSST frontal energy) and bathymetry), all of which may affect the availability of swordfish and blue shark to the fishery, and three variables (number of lightsticks per hook, lunar index, and wind velocity) which may relate to the effectiveness of the fishing gear. Longline CPUE data were analysed in relation to SST data on three spatiotemporal scales (18 km weekly, 1°‐weekly, 1°‐monthly). Depending on the scale of SST data, GAM analysis accounted for 39–42% and 44–45% of the variance in nominal CPUE for swordfish and blue shark, respectively. Stepwise GAM building revealed the relative importance of the variables in explaining the variance in CPUE. For swordfish, by decreasing importance, the variables ranked: (1) latitude, (2) time, (3) longitude, (4) lunar index, (5) lightsticks per hook, (6) SST, (7) ΔSST frontal energy, (8) wind velocity, (9) SST frontal energy, (10) bathymetry, and (11) ΔSST. For blue shark, the variables ranked: (1) latitude, (2) longitude, (3) time, (4) SST, (5) lightsticks per hook, (6) ΔSST, (7) ΔSST frontal energy, (8) SST frontal energy, (9) wind velocity, (10) lunar index, and (11) bathymetry. Swordfish CPUE increased with latitude to peak at 35–40°N and increased in the vicinity of temperature fronts and during the full moon. Shark CPUE also increased with latitude up to 40°N, and increased westward, but declined abruptly at SSTs colder than 16°C.

Santos A M P, Fiúza A F G, Laurs R M.

Influence of SST on catches of swordfish and tuna in the Portuguese domestic longline fishery

[J]. International Journal of Remote Sensing, 2006, 27(15):3131-3152.

DOI      URL     [本文引用: 1]

Chang S K, Hsu C C.

Development of standardized catch rate of South Atlantic swordfish for Taiwanese longline fleet

[C]//ICCAT.Collection Volume of Scientific Paper. Spain:ICCAT, 2002:2-120.

[本文引用: 2]

Natale D A, Mangano A.

Moon phases influence on CPUE:a first analysis of swordfish driftnet catch data from the Italian fleet between 1990 and 1991

[C]//ICCAT.Collective Volume of Scientific Papers. Italian:ICCAT, 1995, 44(1):264-267.

[本文引用: 1]

Bigelow K, Musyl M K, Poisson F, et al.

Pelagic longline gear depth and shoaling

[J]. Fisheries Research, 2006, 77(2):173-183.

DOI      URL     [本文引用: 2]

Poisson F, Gaertner J C, Taquet M, et al.

Effects of lunar cycle and fishing operations on longline-caught pelagic fish:fishing performance,capture time,and survival of fish

[J]. Aqua Docs, 2010, 108(3):268-281.

[本文引用: 2]

Loefer J K, Sedberry G R, McGovern J C.

Nocturnal depth distribution of western North Atlantic Swordfish (Xiphias gladius,Linnaeus,1758)in relation to lunar illumination

[J]. Gulf and Caribbean Research, 2007, 19(2):83-88.

[本文引用: 3]

Canese S, Garibaldi F, Relini L O, et al.

Swordfish tagging with pop-up satellite tags in the Mediterranean Sea

[C]// ICCAT.Collective Volume of Scientific Papers. Italian:ICCAT, 2008, 62(4):1052-1057.

[本文引用: 2]

Dewar H, Prince E D, Musyl M K, et al.

Movements and behaviors of swordfish in the Atlantic and Pacific Oceans examined using pop-up satellite archival tags

[J]. Fisheries Oceanography, 2011, 20(3):219-241.

DOI      URL     [本文引用: 2]

Orbesen E S, Snodgrass D, Shideler G S, et al.

Diurnal patterns in Gulf of Mexico epipelagic predator interactions with pelagic longline gear:implications for target species catch rates and bycatch mitigation

[J]. Bulletin of Marine Science, 2017, 93(2):573-589.

DOI      URL     [本文引用: 2]

Suca J J, Rasmuson L K, Malca E, et al.

Characterizing larval swordfish habitat in the western tropical North Atlantic

[J]. Fisheries Oceanography, 2018, 27(3):246-258.

DOI      URL     [本文引用: 2]

Ceyhan T, Tserpes G, Akyol O, et al.

The effect of the lunar phase on the catch per unit effort (CPUE) of the Turkish swordfish longline fishery in the eastern Mediterranean Sea

[J]. Acta Ichthyologica et Piscatoria, 2018, 48(3):213-219.

DOI      URL     [本文引用: 2]

Guyomard D, Desruisseaux M, Poisson F, et al.

GAM analysis of operational and environmental factors affecting swordfish (Xiphias gladius) catch and CPUE of the Reunion Island longline fishery,in the South Western Indian Ocean

[C]// IOTC.4ème Session du Groupe de Travail de la CTOI sur les poissons Porte-épée.Indian:IOTC, 2004.

[本文引用: 4]

Hazin F H V, Hazin H G, Boeckmann C E, et al.

Preliminary study on the reproductive biology of swordfish,Xiphias gladius (Linnaeus 1758),in the southwestern equatorial Atlantic Ocean

[C]//ICCAT.Collective Volume of Scientific Papers. Spain:ICCAT, 2002, 54(5):1560-1569.

[本文引用: 2]

Damalas D, Megalofonou P, Apostolopoulou M.

Environmental,spatial,temporal and operational effects on swordfish (Xiphias gladius) catch rates of eastern Mediterranean Sea longline fisheries

[J]. Fisheries Research, 2007, 84(2):233-246.

DOI      URL     [本文引用: 2]

Moreno S, Pol J, Muñoz L.

Influence of the moon on the abundance of swordfish

[C]//ICCAT.Collective Volume of Scientific Papers. Portugal:ICCAT, 1991, 35(2):508-510.

[本文引用: 2]

Draganik B, Cholyst J.

Temperature and moonlight as stimulators for feeding activity by swordfish

[C]//ICCAT.Collective Volume of Scientific Papers. Portugal:ICCAT, 1988, 27(1):305-314.

[本文引用: 1]

Vega R, Licandeo R.

The effect of American and Spanish longline systems on target and non-target species in the eastern South Pacific swordfish fishery

[J]. Fisheries Research, 2009, 98(1-3):22-32.

DOI      URL     [本文引用: 3]

Hazin H G, Hazin F H V, Travassos P, et al.

Effect of light-sticks and electralume attractors on surface-longline catches of swordfish (Xiphias gladius,Linnaeus,1959) in the southwest equatorial Atlantic

[J]. Fisheries Research, 2005, 72(2-3):271-277.

DOI      URL     [本文引用: 3]

Beverly S, Curran D, Musyl M, et al.

Effects of eliminating shallow hooks from tuna longline sets on target and non-target species in the Hawaii-based pelagic tuna fishery

[J]. Fisheries Research, 2009, 96(2-3):281-288.

DOI      URL     [本文引用: 1]

Dell J, Campbell R, Hillary R, et al.

Standardised CPUE indices for the target species in the Eastern Tuna and swordfish fishery

[R].IATTC:Technical Report Working Paper to the 29th meeting of Tropical Tuna Resource Assessment Group held, Australia, 2020, 9:10-11.

[本文引用: 1]

Stone H H, Dixon L K.

A comparison of catches of swordfish,Xiphias gladius,and other pelagic species from Canadian longline gear configured with alternating monofilament and multifilament nylon gangions

[J]. Fishery Bulletin, 2001, 99(1):210-216.

[本文引用: 2]

/