• Supervised by:Fujian Provincial Department of Ocean and Fisheries
  • Sponsored by:Fujian Society of Fisheries, Fisheries Research Institute of Fujian
Zeng S,Chen X H,Zhong S,et al. Study on the mitochondrial genome and phylogeny of Rhinogobius changtinensis[J]. Journal of Fisheries Research,xxxx,xx(x) :1 − 13. DOI: 10.14012/j.jfr.2024164
Citation: Zeng S,Chen X H,Zhong S,et al. Study on the mitochondrial genome and phylogeny of Rhinogobius changtinensis[J]. Journal of Fisheries Research,xxxx,xx(x) :1 − 13. DOI: 10.14012/j.jfr.2024164

Study on the mitochondrial genome and phylogeny of Rhinogobius changtinensis

More Information
  • Received Date: December 24, 2024
  • Revised Date: February 18, 2025
  • Accepted Date: February 28, 2025
  • Objective 

    The genus Rhinogobius is highly diverse in species, and exhibits significant variation in morphological traits, makeing traditional morphological methods unreliable for accurate species identification and classification. Rhinogobius changtinensis, a species in this genus, lacks clear mitochondrial genomic data, and its phylogenetic relationships remain poorly understood. This study aims to analyze the mitochondrial genome of R. changtinensis and provide insights into species identification, classification, and the phylogenetic study of the genus Rhinogobius.

    Methods 

    Using the Illumina NovaSeq X Plus platform, the study conducted next-generation sequencing on the mitochondrial genome of R. changtinensis, followed by the assembly and annotation of the genome sequence, and then analyzed the structural features and base composition of the mitochondrial genome. Based on the nucleotide sequences of 13 protein-coding genes, the study constructed a phylogenetic tree using maximum likelihood (ML) and Bayesian inference (BI) methods.

    Results 

    The mitochondrial genome of R. changtinensis was 16 487 bp in length, comprising 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and an A+T-rich region of 854 bp. The gene arrangement was consistent with most species within the genus. Phylogenetic analysis indicated that R. changtinensis was the most closely related to Rhinogobius duospilus (PP=1, BS=100%).

    Significance 

    This study provides valuable mitochondrial genomic data for R. changtinensis and offers crucial insights into the phylogenetic relationships within the genus Rhinogobius, contributing to the understanding of its systematics.

  • [1]
    周传江,马爱喆,汪曦,等. 鱼类线粒体基因组研究进展[J]. 河南师范大学学报(自然科学版),2019,47(2):74 − 82.

    Zhou C J, Ma A Z, Wang X, et al. Progress on fish mitochondrial genome[J]. Journal of Henan Normal University (Natural Science Edition), 2019, 47(2): 74 − 82.
    [2]
    金逍逍,孙悦娜,王日昕,等. 虾虎鱼类线粒体全基因组序列结构特征分析及系统发育关系探讨[J]. 遗传,2013,35(12):1391 − 1402.

    Jin X X, Sun Y N, Wang R X, et al. Characteristics and phylogenetic analysis of mitochondrial genome in the gobies[J]. Hereditas, 2013, 35(12): 1391 − 1402.
    [3]
    郭新红,刘少军,刘巧,等. 鱼类线粒体DNA研究新进展[J]. 遗传学报,2004,31(9):983 − 1000.

    Guo X H, Liu S J, Liu Q, et al. New progresses on mitochondrial DNA in fish[J]. Acta Genetica Sinica, 2004, 31(9): 983 − 1000.
    [4]
    Pereira S L. Mitochondrial genome organization and vertebrate phylogenetics[J]. Genetics and Molecular Biology, 2000, 23(4): 745 − 752. DOI: 10.1590/S1415-47572000000400008
    [5]
    Kong X Y, Dong X L, Zhang Y C, et al. A novel rearrangement in the mitochondrial genome of tongue sole, Cynoglossus semilaevis: control region translocation and a tRNA gene inversion[J]. Genome, 2009, 52(12): 975 − 984. DOI: 10.1139/G09-069
    [6]
    Wang H Y, Tsai M P, Dean J, et al. Molecular phylogeny of gobioid fishes (Perciformes: Gobioidei) based on mitochondrial 12S rRNA sequences[J]. Molecular Phylogenetics and Evolution, 2001, 20(3): 390 − 408. DOI: 10.1006/mpev.2001.0957
    [7]
    Jeon H B, Choi S H, Suk H Y. Exploring the utility of partial cytochrome c oxidase subunit 1 for DNA barcoding of gobies[J]. Animal Systematics, Evolution and Diversity, 2012, 28(4): 269 − 278. DOI: 10.5635/ASED.2012.28.4.269
    [8]
    李林,梁宏伟,李忠,等. 瓦氏黄颡鱼线粒体全基因组序列分析及系统进化[J]. 遗传,2011,33(6):627 − 635.

    Li L, Liang H W, Li Z, et al. Sequence and phylogeny analysis of the complete mitochondrial genome of Pelteobagrus vachelli[J]. Hereditas, 2011, 33(6): 627 − 635.
    [9]
    Huang S P, Chen I S. Three new species of Rhinogobius Gill, 1859 (Teleostei: Gobiidae) from the Hanjiang Basin, southern China[J]. The Raffles Bulletin of Zoology, 2007(S14): 101 − 110.
    [10]
    李帆,钟俊生. 中国广东省虾虎鱼一新种——周氏吻虾虎鱼(Rhinogobius zhoui)(鲈形目:虾虎鱼科)[J]. 动物学研究,2009,30(3):327 − 333. DOI: 10.3724/SP.J.1141.2009.03327

    Li F, Zhong J S. Rhinogobius zhoui, a new goby (Perciformes: Gobiidae) from Guangdong Province, China[J]. Zoological Research, 2009, 30(3): 327 − 333. DOI: 10.3724/SP.J.1141.2009.03327
    [11]
    Takahashi S, Okazaki T. A new lentic form of the “yoshinobori” species complex, Rhinogobius spp. from Lake Biwa, Japan, compared with lake–river migrating Rhinogobius sp. OR[J]. Ichthyological Research, 2002, 49(4): 333 − 339. DOI: 10.1007/s102280200049
    [12]
    Li L Z, Li C Y, Shao W H, et al. Two new species of freshwater goby (Teleostei, Gobiidae) from the upper Youshui River, Chongqing, China[J]. ZooKeys, 2024, 1210: 173 − 195. DOI: 10.3897/zookeys.1210.128121
    [13]
    Wanghe K Y, Hu F X, Chen M H, et al. Rhinogobius houheensis, a new species of freshwater goby (Teleostei: Gobiidae) from the Houhe National Nature Reserve, Hubei Province, China[J]. Zootaxa, 2020, 4820(2): 361 − 365.
    [14]
    Chen I S, Chen K Y, Wang S C. A new freshwater goby of Rhinogobius Gill, 1859 (Teleostei, Gobiidae) from the Jangshi Basin, Fujian Province, southeastern China[J]. Zootaxa, 2024, 5550(1): 369 − 380. DOI: 10.11646/zootaxa.5550.1.37
    [15]
    Takahashi S, Okazaki T. Rhinogobius biwaensis, a new gobiid fish of the “yoshinobori” species complex, Rhinogobius spp. , endemic to Lake Biwa, Japan[J]. Ichthyological Research, 2017, 64(4): 444 − 457.
    [16]
    Thacker C E. Molecular phylogeny of the gobioid fishes (Teleostei: Perciformes: Gobioidei)[J]. Molecular Phylogenetics and Evolution, 2003, 26(3): 354 − 368. DOI: 10.1016/S1055-7903(02)00361-5
    [17]
    Chen S F, Zhou Y Q, Chen Y R, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884 − i890. DOI: 10.1093/bioinformatics/bty560
    [18]
    Xu Y B, Zeng S, Meng Y Z, et al. The mitochondrial genome of Hua aristarchorum (Heude, 1889) (Gastropoda, Cerithioidea, Semisulcospiridae) and its phylogenetic implications[J]. ZooKeys, 2024, 1192: 237 − 255. DOI: 10.3897/zookeys.1192.116269
    [19]
    Yang D Y, Zeng S, Wang Z, et al. Molecular systematics of Perinereis and an investigation of the status and relationships of the cultured species Perinereis wilsoni Glasby & Hsieh, 2006 (Annelida, Nereididae)[J]. Zoosystematics and Evolution, 2024, 100(4): 1297 − 1314. DOI: 10.3897/zse.100.127201
    [20]
    Donath A, Jühling F, Al-Arab M, et al. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes[J]. Nucleic Acids Research, 2019, 47(20): 10543 − 10552. DOI: 10.1093/nar/gkz833
    [21]
    Allio R, Schomaker-Bastos A, Romiguier J, et al. MitoFinder: efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics[J]. Molecular Ecology Resources, 2020, 20(4): 892 − 905. DOI: 10.1111/1755-0998.13160
    [22]
    Meng G L, Li Y Y, Yang C T, et al. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization[J]. Nucleic Acids Research, 2019, 47(11): e63. DOI: 10.1093/nar/gkz173
    [23]
    Iwasaki W, Fukunaga T, Isagozawa R, et al. MitoFish and MitoAnnotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline[J]. Molecular Biology and Evolution, 2013, 30(11): 2531 − 2540. DOI: 10.1093/molbev/mst141
    [24]
    Zhang D, Gao F L, Jakovlić I, et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies[J]. Molecular Ecology Resources, 2020, 20(1): 348 − 355. DOI: 10.1111/1755-0998.13096
    [25]
    Kearse M, Moir R, Wilson A, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data[J]. Bioinformatics, 2012, 28(12): 1647 − 1649. DOI: 10.1093/bioinformatics/bts199
    [26]
    Yang Q H, Lin Q, He L B, et al. The complete mitochondrial genome sequence of Acentrogobius sp. (Gobiiformes: Gobiidae) and phylogenetic studies of Gobiidae[J]. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27(4): 2927 − 2928.
    [27]
    Katoh K, Standley D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Molecular Biology and Evolution, 2013, 30(4): 772 − 780. DOI: 10.1093/molbev/mst010
    [28]
    Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis[J]. Molecular Biology and Evolution, 2000, 17(4): 540 − 552. DOI: 10.1093/oxfordjournals.molbev.a026334
    [29]
    Kalyaanamoorthy S, Minh B Q, Wong T K F, et al. ModelFinder: fast model selection for accurate phylogenetic estimates[J]. Nature Methods, 2017, 14(6): 587 − 589. DOI: 10.1038/nmeth.4285
    [30]
    Nguyen L T, Schmidt H A, Von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2015, 32(1): 268 − 274. DOI: 10.1093/molbev/msu300
    [31]
    Ronquist F, Teslenko M, Van Der Mark P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space[J]. Systematic Biology, 2012, 61(3): 539 − 542. DOI: 10.1093/sysbio/sys029
    [32]
    Letunic I, Bork P. Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool[J]. Nucleic Acids Research, 2024, 52(W1): W78 − W82. DOI: 10.1093/nar/gkae268
    [33]
    Xie L P, Yang X F, Ma Z H, et al. Complete mitochondrial genome of Rhinogobius giurinus (Perciformes: Gobiidae: Gobionellinae)[J]. Mitochondrial DNA, 2015, 26(2): 321 − 322. DOI: 10.3109/19401736.2013.830293
    [34]
    Wang D, Dai C X, Li Q, et al. Complete mitochondrial genome and phylogenic analysis of Rhinogobius cliffordpopei (Perciformes, Gobiidae)[J]. Mitochondrial DNA Part B: Resources, 2019, 4(2): 2473 − 2474. DOI: 10.1080/23802359.2019.1637287
    [35]
    Zhong L Q, Wang M H, Li D M, et al. Complete mitochondrial genome of freshwater goby Rhinogobius cliffordpopei (Perciformes, Gobiidae): genome characterization and phylogenetic analysis[J]. Genes & Genomics, 2018, 40(11): 1137 − 1148.
    [36]
    Wei S J, Shi M, Chen X X, et al. New views on strand asymmetry in insect mitochondrial genomes[J]. PLoS One, 2010, 5(9): e12708. DOI: 10.1371/journal.pone.0012708
    [37]
    Wolstenholme D R. Animal mitochondrial DNA: structure and evolution[J]. International Review of Cytology, 1992, 141: 173 − 216.
    [38]
    李帆. 钱塘江流域的吻虾虎鱼属(鲈形目:虾虎鱼科)物种的分类与分布研究[D]. 上海:复旦大学,2011.

    Li F. Study on classification and distribution of Rhinogobius (Perciformes: Gobiidae) from the Qiantangjiang Basin[D]. Shanghai: Fudan University, 2011.
    [39]
    Doiuchi R, Nakabo T. Molecular phylogeny of the stromateoid fishes (Teleostei: Perciformes) inferred from mitochondrial DNA sequences and compared with morphology-based hypotheses[J]. Molecular Phylogenetics and Evolution, 2006, 39(1): 111 − 123. DOI: 10.1016/j.ympev.2005.10.007
  • Related Articles

    [1]LI He, HU Zongyun, XIAO Zuguo, FENG Yan, WU Lina, LI Jingwei, YAN Youli. Effects of Carassius auratus gibelio var. CAS Ⅲ cultured in the paddy fields on microbiota community structure of the rice-crab culture systems[J]. Journal of Fisheries Research, 2025, 47(2): 138-151. DOI: 10.14012/j.jfr.2024089
    [2]ZHANG Xixi, ZHU Zhihuang, WANG Jianxin, SHI Ge, LIN Qi. Mitochondrial genome characteristics and phylogenetic analysis in Portunidae[J]. Journal of Fisheries Research. DOI: 10.14012/j.jfr.2025014
    [3]LI Xian, WANG Ya, CAO Xiao, ZHU Shuren, AN Li, ZHU Yong’an, MENG Qinglei, DONG Wen, DONG Jun. Genome-wide association study of growth traits in Channa argus[J]. Journal of Fisheries Research. DOI: 10.14012/j.jfr.2025049
    [4]YANG Ziping, LI Daming, LIU Yanshan, YANG Jiaxin. Genetic diversity and genetic structure of Culter alburnus in Tai Lake and Hongze Lake based on mitochondrial DNA Cyt b gene sequences[J]. Journal of Fisheries Research, 2023, 45(1): 1-7. DOI: 10.14012/j.cnki.fjsc.2023.01.001
    [5]WANG Zhuobiao, FANG Ming, ZHENG Leyun, GE Hui, CHEN Xinxin, LUO Huiyu, WANG Zhiyong. Evaluation of genomic selection against neuronecrosis in the red-spotted grouper[J]. Journal of Fisheries Research, 2022, 44(3): 205-212. DOI: 10.14012/j.cnki.fjsc.2022.03.001
    [6]GUO Rui, ZHANG Shanpi, JIANG Xiaobin, WANG Wei, WANG Hongcheng, CAI Leiming, YANG Xiaoqiang. Molecular identification and phylogenetic analysis of Myxobolus honghuensis found in pharynx of goldfish Carassius auratus[J]. Journal of Fisheries Research, 2021, 43(1): 61-66. DOI: 10.14012/j.cnki.fjsc.2021.01.007
    [7]XU Chunyan, LIU Yong, MA Chao, ZHUANG Zhidong, SHEN Changchun, CAI Jiandi. Application of DNA barcoding based on CO I gene in phylogenetic classification of Sciaenidae[J]. Journal of Fisheries Research, 2019, 41(5): 359-365. DOI: 10.14012/j.cnki.fjsc.2019.05.001
    [8]YANG Zhang-wu, YANG Keng, ZHANG Zhe, LI Zheng-liang, GE Hui. Research on the biofloc bacterial community structure during larval rearing of Litopenaeus vannamei using metagenome sequencing[J]. Journal of Fisheries Research, 2015, 37(2): 91-97. DOI: 10.14012/j.cnki.fjsc.2015.02.001
    [9]NING Yue, WU Qi-sheng, HSU Te-Hua, GWO Jin-Chywan, ZENG Zhi-nan, LIN Xiang-yang. Genetic structure and population differentiation of Sipunculus nudus in China based on sequence analyses of mitochondrial COI gene[J]. Journal of Fisheries Research, 2012, 34(2): 91-98.
    [10]TONG Wen-ting. Molecular biological identification of the pathogen associated with skin caker of Anguilla japonica[J]. Journal of Fisheries Research, 2011, 33(2): 33-38.

Catalog

    Article views (14) PDF downloads (4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return